亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel approach to pore pressure modeling based on conventional well logs using convolutional neural network

岩石物理学 地质学 石油工程 钻探 压缩性 测井 人工神经网络 钻井液 岩土工程 计算机科学 工程类 多孔性 人工智能 机械工程 航空航天工程
作者
Morteza Matinkia,Ali Amraeiniya,Mohammad Mohammadi Behboud,Mohammad Mehrad,Mahdi Bajolvand,Mohammad Hossein Gandomgoun,Mehdi Gandomgoun
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier BV]
卷期号:211: 110156-110156 被引量:29
标识
DOI:10.1016/j.petrol.2022.110156
摘要

Accurate prediction of pore pressure (PP) is among the most critical concerns to the design of drilling operation because of the remarkable role of this parameter in preventing particular drilling problems such as wellbore instability, drilling pipe stuck, mud loss, kicks, and even blow outs. Given the limitations of PP measurement through in-hole well tests, a number of analytic and intelligent techniques have been developed to estimate the PP from conventionally available petrophysical logs at offset wells. In this contribution, analytic equations are combined with intelligent algorithms (IAs) in an integrated workflow for estimating the PP. For this purpose, we collected the required data from two wells (herein referred to as Wells A and B) penetrating a carbonate reservoir in two fields in southwestern Iran. The collected data included full-set petrophysical log data at a total of 2850 points as well as 15 measured PPs using the RFT tool. In order to model and validate the results, the data from Well A was used to train the model, with the Well-B data used for validation. Once finished with data collection, a noise attenuation stage was implemented through median filtering. Subsequently, PP estimation was practiced using a couple of popular analytic models, namely modified Eaton's, Bowers', and compressibility models, with the results compared to the measured PPs. Next, a feature selection phase was conducted where depth (Depth), gamma ray log (CGR), density log (RHOB), resistivity log (RT), pore compressibility (Cp), and slowness log (DT) were selected as the most effective parameters for estimating the PP out of the 8 parameters studied at Well A. Feature selection was performed using the second version of nondominated-sorting genetic algorithm (NSGA-II) combined with multilayer perceptron (MLP) neural network (NN). Next, deep learning techniques, simple form of the least square support vector machine (LSSVM) and its hybrid forms with particle swarm optimization (PSO), cuckoo optimization algorithm (COA), and genetic algorithm (GA), and multilayer extreme learning machine (MELM) hybridized with the PSO, COA, and GA were used to estimate the PP based on the data at Well A, with the results then validated using the data at Well B. Results of the training and testing phases showed that, among the 9 models considered in this research, the best results were produced by the CNN model followed by MELM-COA, and LSSVM-COA, corresponding to root-mean-square errors (RMSEs) of 0.1072, 0.1175, and 0.1237 and determination coefficients (R2) of 0.9884, 0.9860, and 0.9844, respectively, indicating the higher accuracy and generalizability of these models compared to other investigated models. Evaluation of these models on the validation data from Well B further remarked the superiority of the CNN model, as per an RMSE and R2 of 0.1066 and 0.9806, respectively. Indeed, the better performance of the CNN model than the other models in both the training and validation phases reflects the high generalizability of this model in the range of the studied data. In general, the good performance of the intelligent models in similar formation along two wells – where the analytic models rather failed to exhibit consistently good performance – proves the superiority of the IAs over conventional analytic models. This methodology is strongly recommended provided more diverse data is available at in larger amounts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助陶醉的代丝采纳,获得10
11秒前
呆萌冰彤完成签到 ,获得积分10
27秒前
48秒前
量子星尘发布了新的文献求助10
51秒前
56秒前
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
杨迪发布了新的文献求助10
1分钟前
昭荃完成签到 ,获得积分0
1分钟前
科研通AI5应助杨迪采纳,获得10
1分钟前
1分钟前
HJL发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
草木完成签到 ,获得积分20
2分钟前
2分钟前
Memory丶冷艳完成签到 ,获得积分10
2分钟前
微纳组刘同完成签到,获得积分10
3分钟前
3分钟前
4分钟前
拼搏海云完成签到,获得积分20
4分钟前
拼搏海云发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助150
4分钟前
Luis应助汤圆采纳,获得10
4分钟前
丘比特应助拼搏海云采纳,获得10
4分钟前
锅包肉完成签到 ,获得积分10
4分钟前
5分钟前
沧海一粟米完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
等一个夏天完成签到 ,获得积分10
6分钟前
6分钟前
冬去春来完成签到 ,获得积分10
6分钟前
目送完成签到,获得积分10
6分钟前
常有李完成签到,获得积分10
6分钟前
乐乐应助Shan采纳,获得10
6分钟前
6分钟前
Shan发布了新的文献求助10
6分钟前
Shan完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270315
求助须知:如何正确求助?哪些是违规求助? 3800788
关于积分的说明 11910900
捐赠科研通 3447661
什么是DOI,文献DOI怎么找? 1891019
邀请新用户注册赠送积分活动 941763
科研通“疑难数据库(出版商)”最低求助积分说明 845870