亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Constructing tongue coating recognition model using deep transfer learning to assist syndrome diagnosis and its potential in noninvasive ethnopharmacological evaluation

涂层 卷积神经网络 舌头 2019年冠状病毒病(COVID-19) 人工智能 计算机科学 深度学习 医学 机器学习 疾病 模式识别(心理学) 病理 材料科学 复合材料 传染病(医学专业)
作者
Xu Wang,Xinrong Wang,Yanni Lou,Jingwei Liu,Shirui Huo,Xiaohan Pang,Weilu Wang,Chaoyong Wu,Yufeng Chen,Yu Chen,Aiping Chen,Fukun Bi,Weiying Xing,Qingqiong Deng,Liqun Jia,Jianxin Chen
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:285: 114905-114905 被引量:25
标识
DOI:10.1016/j.jep.2021.114905
摘要

Tongue coating has been used as an effective signature of health in traditional Chinese medicine (TCM). The level of greasy coating closely relates to the strength of dampness or pathogenic qi in TCM theory. Previous empirical studies and our systematic review have shown the relation between greasy coating and various diseases, including gastroenteropathy, coronary heart disease, and coronavirus disease 2019 (COVID-19). However, the objective and intelligent greasy coating and related diseases recognition methods are still lacking. The construction of the artificial intelligent tongue recognition models may provide important syndrome diagnosis and efficacy evaluation methods, and contribute to the understanding of ethnopharmacological mechanisms based on TCM theory.The present study aimed to develop an artificial intelligent model for greasy tongue coating recognition and explore its application in COVID-19.Herein, we developed greasy tongue coating recognition networks (GreasyCoatNet) using convolutional neural network technique and a relatively large (N = 1486) set of tongue images from standard devices. Tests were performed using both cross-validation procedures and a new dataset (N = 50) captured by common cameras. Besides, the accuracy and time efficiency comparisons between the GreasyCoatNet and doctors were also conducted. Finally, the model was transferred to recognize the greasy coating level of COVID-19.The overall accuracy in 3-level greasy coating classification with cross-validation was 88.8% and accuracy on new dataset was 82.0%, indicating that GreasyCoatNet can obtain robust greasy coating estimates from diverse datasets. In addition, we conducted user study to confirm that our GreasyCoatNet outperforms TCM practitioners, yet only consuming roughly 1% of doctors' examination time. Critically, we demonstrated that GreasyCoatNet, along with transfer learning, can construct more proper classifier of COVID-19, compared to directly training classifier on patient versus control datasets. We, therefore, derived a disease-specific deep learning network by finetuning the generic GreasyCoatNet.Our framework may provide an important research paradigm for differentiating tongue characteristics, diagnosing TCM syndrome, tracking disease progression, and evaluating intervention efficacy, exhibiting its unique potential in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
51秒前
cyx发布了新的文献求助10
56秒前
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
ooouiia完成签到 ,获得积分10
1分钟前
ooouiia关注了科研通微信公众号
1分钟前
SCUWJ完成签到,获得积分10
2分钟前
SCUWJ发布了新的文献求助10
2分钟前
迷茫的一代完成签到,获得积分10
3分钟前
cyx完成签到,获得积分10
3分钟前
3分钟前
3分钟前
不晓天完成签到,获得积分20
3分钟前
zz发布了新的文献求助10
3分钟前
不晓天发布了新的文献求助10
3分钟前
Hello应助zz采纳,获得10
3分钟前
Jasper应助不晓天采纳,获得10
3分钟前
夏瑞发布了新的文献求助10
3分钟前
阿鑫完成签到 ,获得积分10
4分钟前
4分钟前
夏瑞完成签到,获得积分10
4分钟前
嘚嘚发布了新的文献求助10
4分钟前
完美世界应助超帅寻双采纳,获得10
4分钟前
zsmj23完成签到 ,获得积分0
4分钟前
科研通AI5应助yyg采纳,获得10
5分钟前
5分钟前
5分钟前
超帅寻双发布了新的文献求助10
5分钟前
5分钟前
yyg发布了新的文献求助10
5分钟前
爱学习的小曹关注了科研通微信公众号
5分钟前
超帅寻双完成签到,获得积分10
5分钟前
老迟到的羊完成签到 ,获得积分10
6分钟前
6分钟前
失眠天亦应助猕猴桃猴采纳,获得10
6分钟前
6分钟前
sun发布了新的文献求助10
6分钟前
田様应助sun采纳,获得10
6分钟前
sun完成签到,获得积分10
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779113
求助须知:如何正确求助?哪些是违规求助? 3324752
关于积分的说明 10219817
捐赠科研通 3039871
什么是DOI,文献DOI怎么找? 1668456
邀请新用户注册赠送积分活动 798658
科研通“疑难数据库(出版商)”最低求助积分说明 758503