GAF Representation of Millimeter Wave Drone RCS and Drone Classification Method Based on Deep Fusion Network Using ResNet

无人机 计算机科学 雷达 人工智能 深度学习 极高频率 遥感 雷达截面 电信 地理 遗传学 生物
作者
Lv Ye,Shengbo Hu,Tingting Yan,Yike Xie
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:59 (1): 336-346 被引量:12
标识
DOI:10.1109/taes.2022.3182303
摘要

In recent years, with the rapid increase in the number of drones, the abuse of drones for activities such as terrorist attacks is bound to pose a threat to public safety and privacy. Therefore, it is very important to identify and classify them. Millimeter-wave (MMW) radar provides an effective means to detect drones. And with the development of B5G/6G technologies, a large number of MMW base stations will be deployed in cities in the future. These MMW base stations can be used as MMW radar through simple modification, which greatly saves the detection cost. Radar cross section, as a common data of radar, can provide a data source for drone recognition and classification. Therefore, using the publicly available radar cross section (RCS) data set of drones in the MMW band. We first encode the RCS series into a 2D Gramian angular field (GAF) representation and design a 2D ResNet-10 to classify them. Second, we propose a deep fusion network, which can be used as an RTR with RCS as the information source. The Experimental results show that 2D ResNet-10 is also effective in classifying GAF representations and its time consumption is less than 2D ResNet-18. Compared with other RCS-based classification methods, the performance of deep fusion network is the best.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助ytong采纳,获得10
1秒前
2秒前
Charlse_Su发布了新的文献求助20
2秒前
小九没烦恼完成签到,获得积分10
2秒前
ll2925203完成签到,获得积分10
3秒前
3秒前
陈龙完成签到,获得积分10
3秒前
3秒前
a焦完成签到,获得积分10
3秒前
愉快的哈密瓜完成签到,获得积分10
4秒前
丁一完成签到,获得积分10
4秒前
农学博士后完成签到,获得积分10
4秒前
4秒前
灵犀完成签到,获得积分10
4秒前
哈尼完成签到,获得积分10
4秒前
逗逗完成签到,获得积分10
5秒前
光亮千易完成签到,获得积分10
5秒前
麻瓜晋升小巫师完成签到,获得积分10
5秒前
myg8627发布了新的文献求助10
5秒前
5秒前
许起眸发布了新的文献求助10
7秒前
mrz完成签到,获得积分10
7秒前
玄之又玄完成签到,获得积分10
7秒前
axl发布了新的文献求助20
7秒前
8秒前
炙热怜寒发布了新的文献求助30
8秒前
Mt完成签到,获得积分10
8秒前
可爱的函函应助a焦采纳,获得10
8秒前
演化的蛙鱼完成签到,获得积分10
8秒前
流流124141完成签到,获得积分10
9秒前
柳柳完成签到,获得积分10
9秒前
2549360318完成签到,获得积分10
9秒前
gfr123完成签到,获得积分10
10秒前
tianmengkui完成签到,获得积分10
10秒前
顾矜应助Hustle采纳,获得10
10秒前
cream完成签到,获得积分10
11秒前
FashionBoy应助潇洒映冬采纳,获得10
11秒前
凡高爱自由完成签到,获得积分10
11秒前
12秒前
赵赵赵发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788524
求助须知:如何正确求助?哪些是违规求助? 3333791
关于积分的说明 10264005
捐赠科研通 3049788
什么是DOI,文献DOI怎么找? 1673680
邀请新用户注册赠送积分活动 802157
科研通“疑难数据库(出版商)”最低求助积分说明 760526