Computer vision and machine learning applied in the mushroom industry: A critical review

蘑菇 人工智能 机器视觉 机器学习 计算机科学 工程类 制造工程 计算机视觉 食品科学 化学
作者
Hua Yin,Wenlong Yi,Dian-Ming Hu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107015-107015 被引量:91
标识
DOI:10.1016/j.compag.2022.107015
摘要

Mushrooms are popular food items containing numerous vitamins, dietary fibers, and a large number of proteins. As a result, mushrooms can increase the body’s immunity and prevent many types of cancer to keep the body healthy. For these reasons, the demand for high yields and safety in the production of high-quality mushrooms is increasing. This review highlights the application of computer vision and machine learning algorithms in the mushroom industry. Through a systematic review of papers published between 1991 and 2021, this article introduces key aspects related to mushrooms (e.g., species identification and quality classification based on artificial intelligence), and discusses the advantages and disadvantages of various approaches. Numerous artificial intelligence and machine vision technologies have been implemented in research efforts focusing on edible fungi. However, their applications are generally limited to the identification of poisonous mushrooms according to their forms, the plucking of cultivated mushrooms covered by soil, and the mechanized grading of mushrooms. Clearly, the currently available methods cannot meet the requirements of the digitization and intelligentization in the field of edible mushrooms. Considering these reasons, it is possible to develop further application opportunities, such as digital mushroom phenotype determination, and high-throughput breeding based on big data, and mechanical picking by a harvesting robot as well. Therefore, the integration of computer vision and machine learning with the development of more efficient algorithms will undoubtedly be a hotspot for future studies in the context of the mushroom industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助TOM采纳,获得50
刚刚
我是老大应助敏感的盼夏采纳,获得10
刚刚
创新点在哪里完成签到,获得积分10
刚刚
JamesPei应助llll采纳,获得10
1秒前
1秒前
柴柴发布了新的文献求助10
1秒前
2秒前
lovelana完成签到,获得积分10
2秒前
刘荣圣发布了新的文献求助10
3秒前
在水一方应助很菜的小林采纳,获得10
3秒前
上官若男应助海的呼唤采纳,获得10
4秒前
5秒前
5秒前
打打应助lyy采纳,获得10
5秒前
Zachary发布了新的文献求助10
6秒前
完美世界应助王娟采纳,获得10
6秒前
呵呵贺哈完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
10秒前
风趣之云完成签到,获得积分10
10秒前
10秒前
miao发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
专注的迎梦完成签到,获得积分10
12秒前
慕楠发布了新的文献求助10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
糖丸完成签到,获得积分10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4748170
求助须知:如何正确求助?哪些是违规求助? 4094981
关于积分的说明 12669982
捐赠科研通 3807233
什么是DOI,文献DOI怎么找? 2101745
邀请新用户注册赠送积分活动 1127005
关于科研通互助平台的介绍 1003650