Multi-Class Skin Lesion Detection and Classification via Teledermatology.

计算机科学 人工智能 模式识别(心理学) 分割 卷积神经网络 图像分割 RGB颜色模型 急诊分诊台 二元分类 上下文图像分类 计算机视觉
作者
Muhammad Attique Khan,Khan Muhammad,Muhammad Sharif,Tallha Akram,Victor Hugo C de Albuquerque
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (12): 4267-4275
标识
DOI:10.1109/jbhi.2021.3067789
摘要

Teledermatology is one of the most illustrious applications of telemedicine and e-health. In this field, telecommunication technologies are utilized to transfer medical information to the experts. Due to the skin's visual nature, teledermatology is an effective tool for the diagnosis of skin lesions especially in rural areas. Furthermore, it can also be useful to limit gratuitous clinical referrals and triage dermatology cases. The objective of this research is to classify the skin lesion image samples, received from different servers. The proposed framework is comprised of two module, which include the skin lesion localization/segmentation and the classification. In the localization module, we propose a hybrid strategy that fuses the binary images generated from the designed 16-layered convolutional neural network model and an improved high dimension contrast transform (HDCT) based saliency segmentation. To utilize maximum information extracted from the binary images, a maximal mutual information method is proposed, which returns the segmented RGB lesion image. In the classification module, a pre-trained DenseNet201 model is re-trained on the segmented lesion images using transfer learning. Afterward, the extracted features from the two fully connected layers are down-sampled using the t-distribution stochastic neighbor embedding (t-SNE) method. These resultant features are finally fused using a multi canonical correlation (MCCA) approach and are passed to a multi-class ELM classifier. Four datasets (i.e., ISBI2016, ISIC2017, PH2, and ISBI2018) are employed for the evaluation of the segmentation task, while HAM10000, the most challenging dataset, is used for the classification task. The experimental results in comparison with the state-of-the-art methods affirm the strength of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助Mastertry采纳,获得10
1秒前
2秒前
小王完成签到,获得积分10
3秒前
4秒前
5秒前
蜗牛0356发布了新的文献求助20
7秒前
橘络完成签到 ,获得积分10
9秒前
9秒前
汉堡包应助1234采纳,获得10
10秒前
10秒前
莱贝特完成签到,获得积分10
11秒前
ZAY完成签到,获得积分10
11秒前
13秒前
15秒前
彩色的松思完成签到,获得积分10
15秒前
Emper发布了新的文献求助10
15秒前
17秒前
Jasper应助寒冷子轩采纳,获得10
17秒前
18秒前
轻松的贞发布了新的文献求助10
20秒前
卢敏明发布了新的文献求助10
20秒前
20秒前
Emper完成签到,获得积分10
20秒前
喵了个酥完成签到,获得积分10
22秒前
涛老三完成签到 ,获得积分10
23秒前
缥缈浩然发布了新的文献求助10
23秒前
24秒前
27秒前
缥缈浩然完成签到,获得积分10
28秒前
28秒前
28秒前
30秒前
冷傲山彤发布了新的文献求助20
30秒前
寒冷子轩发布了新的文献求助10
32秒前
胖虎发布了新的文献求助10
32秒前
852应助ff采纳,获得20
32秒前
34秒前
34秒前
34秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669