单层
范德瓦尔斯力
异质结
半导体
钙钛矿(结构)
材料科学
纳米技术
化学
光电子学
结晶学
分子
有机化学
作者
Biao Liu,Mengqiu Long,Meng‐Qiu Cai,Junliang Yang
摘要
Interface Engineering is an effective route to tune structural and electrical properties in semiconductor heterostructures. Two kinds of typical van der Waals (vdW)-type electrical contacts, i.e., the electrical contacts of the Pb-I interface and Cs-I interface with a black phosphorus (BP) monolayer, respectively, in CsPbI3-BP heterostructures are studied by first-principles calculations. The electronic band structures of both CsPbI3 slabs and the BP monolayer are preserved in the combined vdW CsPbI3-BP heterostructures. The heterostructure of the Pb-I interface contacting with BP demonstrates the type-I band alignment, and the Cs-I interface contacting with the BP heterostructure demonstrates the type-II band alignment. The reason for the energy level shift is the work function difference of CsPbI3 slabs relative to the BP monolayer, which drives electrons and holes to move spontaneously. In addition, the CsPbI3-BP heterostructures show much better optical properties than CsPbI3 slabs. The light absorptions are enhanced in the CsPbI3-BP heterostructures, especially in the infrared region, which would improve the use of infrared light in CsPbI3 perovskite solar cells. This work suggests that such inorganic perovskite-BP heterostructures have significant potential for future optoelectronic applications and can enable broad possibilities with compositional tunability in inorganic perovskites.
科研通智能强力驱动
Strongly Powered by AbleSci AI