Detection of sleep apnea using Machine learning algorithms based on ECG Signals: A comprehensive systematic review

支持向量机 睡眠呼吸暂停 计算机科学 人工智能 机器学习 人工神经网络 算法 呼吸暂停 呼吸不足 模式识别(心理学) 多导睡眠图 医学 内科学
作者
Nader Salari,Amin Hosseinian‐Far,Masoud Mohammadi,Hooman Ghasemi,Habibolah Khazaie,Alireza Daneshkhah,Arash Ahmadi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:187: 115950-115950 被引量:63
标识
DOI:10.1016/j.eswa.2021.115950
摘要

• Diagnosis of sleep apnea based on ECG characteristics is very accurate. • Diagnosis of sleep apnea with electrocardiogram can replace the present methods. • SVM and Neural Network algorithms were highly accurate. • Frequency and time domain features were the most commonly used features. Sleep apnea (SA) is a common sleep disorder that is not easy to detect. Recent studies have highlighted ECG analysis as an effective method of diagnosing SA. Because the changes caused by SA on the ECG are imperceptible, the need for new methods in diagnosing this disease is required more than ever. Machine Learning (ML) is recognized as one of the most successful methods of computer aided diagnosis. ML uses new methods to diagnose diseases using past clinical results. The purpose of this study is to evaluate studies using ML algorithms based on ECG characteristics to assess people suffering from SA. In this study, systematically-reviewed articles written in English before October 2020 and indexed in PubMed, Scopus, Web of Science, and IEEE databases were searched with no lower time limit. From these articles, 48 were selected for further review. The selected articles adopteddifferent ML methods for classification. All of these studies were binary where SA was detected from the normal state based on a full ECG stripe (per record), or based on one-minute segments (per segment). Our analysis show that the most common features used in the studies were frequency, time series, and statistical features. Support-Vector Machine (SVM) and deep learning-based neural network (i.e. CNN, DNN) performed best in full record data detection. The highest accuracy, sensitivity, and specificity reported among the selected studies were 100%, which was obtained by an SVM. In another study, the classification was conducted based on ECG segments, and accordingly, the highest classification accuracy was observed in the residual neural network algorithm (RNN). The accuracy, sensitivity, and specificity of this algorithm were reported to be 99%. In general, it can be stated that ML techniques based on ECG characteristics have a high capability in diagnosing SA. These techniques can increase the diagnosis of patients with SA or the detection of SA episodes on ECG record, and can potentially prevent complications of the disease at later stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助沉默的板凳采纳,获得10
刚刚
mmd完成签到 ,获得积分10
1秒前
是小越啊完成签到,获得积分10
1秒前
4秒前
阮大帅气发布了新的文献求助10
7秒前
活泼新儿完成签到 ,获得积分10
14秒前
爱听歌半山完成签到,获得积分10
16秒前
20秒前
wy.he应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
pluto应助爱学习的太阳采纳,获得20
21秒前
wy.he应助科研通管家采纳,获得10
21秒前
pluto应助科研通管家采纳,获得10
21秒前
Misea发布了新的文献求助10
21秒前
tutulunzi完成签到,获得积分0
21秒前
完美世界应助谨慎的擎宇采纳,获得30
21秒前
如意完成签到,获得积分10
22秒前
思源应助Shining_Wu采纳,获得10
23秒前
chocho完成签到 ,获得积分20
23秒前
学习爱我发布了新的文献求助10
25秒前
25秒前
大个应助第八大洋采纳,获得10
25秒前
27秒前
WUT完成签到,获得积分10
30秒前
31秒前
31秒前
Alexbirchurros完成签到 ,获得积分10
33秒前
糊涂的剑发布了新的文献求助10
34秒前
学习爱我完成签到,获得积分10
35秒前
李爱国应助zhangxinxin采纳,获得10
36秒前
37秒前
李爱国应助糊涂的剑采纳,获得10
39秒前
小田发布了新的文献求助10
42秒前
高大的冰双完成签到,获得积分10
42秒前
47秒前
48秒前
50秒前
彭于晏应助小熊饼干采纳,获得10
51秒前
bqss发布了新的文献求助10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325210
关于积分的说明 10221856
捐赠科研通 3040345
什么是DOI,文献DOI怎么找? 1668745
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549