化学
甘草甜素
癌症研究
表皮生长因子受体
癌细胞
癌症
表皮生长因子受体抑制剂
受体
药理学
生物化学
内科学
医学
作者
Yasuaki Kabe,Ikko Koike,Tatsuya Yamamoto,Miwa Hirai,Ayaka Kanai,Ryogo Furuhata,Hitoshi Tsugawa,Erisa Harada,Kenji Sugase,Kazue Hanadate,Nobuji Yoshikawa,Hiroaki Hayashi,Masanori Noda,Susumu Uchiyama,Hiroki Yamazaki,Hirotoshi Tanaka,Takuya Kobayashi,Hiroshi Handa,Makoto Suematsu
出处
期刊:Cancers
[Multidisciplinary Digital Publishing Institute]
日期:2021-06-29
卷期号:13 (13): 3265-3265
被引量:25
标识
DOI:10.3390/cancers13133265
摘要
Progesterone receptor membrane component 1 (PGRMC1) is highly expressed in various cancer cells and contributes to tumor progression. We have previously shown that PGRMC1 forms a unique heme-stacking functional dimer to enhance EGF receptor (EGFR) activity required for cancer proliferation and chemoresistance, and the dimer dissociates by carbon monoxide to attenuate its biological actions. Here, we determined that glycyrrhizin (GL), which is conventionally used to ameliorate inflammation, specifically binds to heme-dimerized PGRMC1. Binding analyses using isothermal titration calorimetry revealed that some GL derivatives, including its glucoside-derivative (GlucoGL), bind to PGRMC1 potently, whereas its aglycone, glycyrrhetinic acid (GA), does not bind. GL and GlucoGL inhibit the interaction between PGRMC1 and EGFR, thereby suppressing EGFR-mediated signaling required for cancer progression. GL and GlucoGL significantly enhanced EGFR inhibitor erlotinib- or cisplatin (CDDP)-induced cell death in human colon cancer HCT116 cells. In addition, GL derivatives suppressed the intracellular uptake of low-density lipoprotein (LDL) by inhibiting the interaction between PGRMC1 and the LDL receptor (LDLR). Effects on other pathways cannot be excluded. Treatment with GlucoGL and CDDP significantly suppressed tumor growth following xenograft transplantation in mice. Collectively, this study indicates that GL derivatives are novel inhibitors of PGRMC1 that suppress cancer progression, and our findings provide new insights for cancer treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI