Deep learning based source identification of environmental audio signals using optimized convolutional neural networks

计算机科学 过度拟合 人工智能 卷积神经网络 机器学习 深度学习 领域(数学) 鉴定(生物学) 特征提取 人工神经网络 模式识别(心理学) 数学 植物 生物 纯数学
作者
Krishna Presannakumar,Anuj Mohamed
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:143: 110423-110423 被引量:7
标识
DOI:10.1016/j.asoc.2023.110423
摘要

The research in the field of environmental sounds is a growing area due to its enormous potential and its applications. One of the major factors that affect the model performance is the noisy, redundant, or irrelevant features. Deep learning models have shown promise in this area, but the extraction of optimal features from audio signals and classification efficiency of the model are still challenging issues in this field. To address the challenges faced by existing methods, this research proposes a unique deep learning framework-based model that employs an enhanced bio-inspired algorithm for feature extraction and environmental sound classification. The quality and relevance of the training features are essential for the model’s accuracy, and a novel algorithm is introduced to select optimal features for improved performance. The algorithm is further improved for weight optimization to address overfitting and accuracy issues. Additionally, a modified version of the Discrete Fourier Transform is introduced to reduce computational complexity, which makes the model more suitable for real-time applications or resource-limited devices. This research emphasizes the necessity for improved algorithms for feature selection and weight optimization. The proposed model exhibits excellent accuracy and efficiency, making it suitable for real-time applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
岚婘发布了新的文献求助20
3秒前
4秒前
Owen应助文章多多采纳,获得10
4秒前
ZZW完成签到,获得积分10
5秒前
宴之思完成签到,获得积分10
5秒前
6秒前
liudun1982发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
TTL完成签到,获得积分10
10秒前
10秒前
10秒前
隐形曼青应助李嘉怡采纳,获得10
13秒前
一只AI艾完成签到,获得积分10
14秒前
Smiling完成签到 ,获得积分10
14秒前
Singularity应助积极以云采纳,获得20
14秒前
张演基完成签到,获得积分10
15秒前
xuxu完成签到,获得积分10
16秒前
16秒前
仁和完成签到,获得积分10
18秒前
Night完成签到,获得积分10
19秒前
1531811发布了新的文献求助10
19秒前
风中黎昕完成签到 ,获得积分10
23秒前
liuyx发布了新的文献求助10
25秒前
丫丫发布了新的文献求助10
26秒前
1531811完成签到,获得积分10
27秒前
wanci应助lifuhao采纳,获得10
28秒前
29秒前
32秒前
1234完成签到,获得积分10
33秒前
34秒前
lifuhao完成签到,获得积分10
34秒前
35秒前
libra发布了新的文献求助10
36秒前
37秒前
尹不愁发布了新的文献求助10
37秒前
量子星尘发布了新的文献求助10
37秒前
sainie完成签到,获得积分10
37秒前
lifuhao发布了新的文献求助10
40秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883201
求助须知:如何正确求助?哪些是违规求助? 3425660
关于积分的说明 10745246
捐赠科研通 3150699
什么是DOI,文献DOI怎么找? 1738721
邀请新用户注册赠送积分活动 839476
科研通“疑难数据库(出版商)”最低求助积分说明 784573