Spatio-Temporal Joint Graph Convolutional Networks for Traffic Forecasting

计算机科学 图形 邻接矩阵 理论计算机科学 数据挖掘 人工智能
作者
Chuanpan Zheng,Xiaoliang Fan,Shirui Pan,Haibing Jin,Zhaopeng Peng,Zonghan Wu,Cheng Wang,Philip S. Yu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (1): 372-385 被引量:43
标识
DOI:10.1109/tkde.2023.3284156
摘要

Recent studies have shifted their focus towards formulating traffic forecasting as a spatio-temporal graph modeling problem. Typically, they constructed a static spatial graph at each time step and then connected each node with itself between adjacent time steps to create a spatio-temporal graph. However, this approach failed to explicitly reflect the correlations between different nodes at different time steps, thus limiting the learning capability of graph neural networks. Additionally, those models overlooked the dynamic spatio-temporal correlations among nodes by using the same adjacency matrix across different time steps. To address these limitations, we propose a novel approach called Spatio-Temporal Joint Graph Convolutional Networks (STJGCN) for accurate traffic forecasting on road networks over multiple future time steps. Specifically, our method encompasses the construction of both pre-defined and adaptive spatio-temporal joint graphs (STJGs) between any two time steps, which represent comprehensive and dynamic spatio-temporal correlations. We further introduce dilated causal spatio-temporal joint graph convolution layers on the STJG to capture spatio-temporal dependencies from distinct perspectives with multiple ranges. To aggregate information from different ranges, we propose a multi-range attention mechanism. Finally, we evaluate our approach on five public traffic datasets and experimental results demonstrate that STJGCN is not only computationally efficient but also outperforms 11 state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猴子完成签到,获得积分10
刚刚
爱笑的傲晴完成签到,获得积分10
1秒前
英俊的铭应助臭屁大王采纳,获得10
2秒前
科研通AI5应助欢呼的世立采纳,获得10
2秒前
自觉忆山完成签到,获得积分10
3秒前
szy完成签到,获得积分10
3秒前
昀宇完成签到 ,获得积分10
4秒前
6秒前
李爱国应助海藻采纳,获得10
6秒前
6秒前
Owen应助xyhua925采纳,获得10
6秒前
欣喜电源完成签到,获得积分10
7秒前
9秒前
fanny完成签到 ,获得积分10
9秒前
搜集达人应助臭屁大王采纳,获得10
10秒前
Jasper应助科研采纳,获得10
10秒前
留胡子的夜白完成签到,获得积分10
10秒前
bull9518发布了新的文献求助10
10秒前
cckyt完成签到,获得积分10
11秒前
11秒前
木瓜小五哥完成签到,获得积分10
11秒前
甜蜜的振家完成签到,获得积分10
13秒前
jj完成签到,获得积分10
13秒前
鸡蛋灌饼与掉渣饼完成签到,获得积分10
13秒前
打打应助陈佳欣采纳,获得10
13秒前
入海完成签到,获得积分10
14秒前
lcy完成签到,获得积分10
14秒前
mew桑完成签到,获得积分10
14秒前
哈哈哈发布了新的文献求助10
15秒前
孤独的AD钙完成签到,获得积分10
15秒前
iNk应助idynamics采纳,获得10
16秒前
17秒前
iNk应助小女子常戚戚采纳,获得10
17秒前
张国麒完成签到 ,获得积分10
18秒前
saudade完成签到,获得积分10
18秒前
fenmiao完成签到,获得积分10
18秒前
星星完成签到,获得积分10
19秒前
优雅的代灵完成签到,获得积分20
19秒前
iNk应助idynamics采纳,获得20
19秒前
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798584
求助须知:如何正确求助?哪些是违规求助? 3344255
关于积分的说明 10319312
捐赠科研通 3060833
什么是DOI,文献DOI怎么找? 1679798
邀请新用户注册赠送积分活动 806776
科研通“疑难数据库(出版商)”最低求助积分说明 763372