Improving Fuel Cell Performance of FeNx-Based Catalysts by Introducing Graphitic Microdomains in the Carbon Matrix

催化作用 碳纤维 材料科学 燃料电池 化学工程 阴极 纳米技术 化学 复合材料 物理化学 有机化学 复合数 工程类
作者
Hongmin Sun,Zhiyuan Ge,Yingru Wang,Donglai Li,Ruolin Peng,Ziliang Deng,Renjie Chang,Wenbo Dong,Chao Chen,Jingbo Li,Yeliang Wang,Shuailong Zhang,Juncai Dong,Yao Yang,Haibo Jin,Liang Cao,Zipeng Zhao
出处
期刊:ACS Nano [American Chemical Society]
卷期号:19 (25): 23359-23369
标识
DOI:10.1021/acsnano.5c06424
摘要

Breaking the known activity-stability trade-off is essential for the broad implementation of Fe-N-C catalysts in fuel cells. Here, we report the development of an atomically dispersed Fe-N-C catalyst with highly active FeNx sites on carbon support with dispersed graphitic microdomains (FeNx-Gmd), which were generated during the Fe3C-catalyzed graphitization. The introduction of graphitic microdomain makes the FeNx-Gmd exhibit outstanding oxygen reduction reaction activity when used as a cathode catalyst in practical fuel cells, with impressive peak power densities of 1.06 and 0.55 W cm-2 under 150 kPaabs H2/O2 and H2/air, respectively. Both power densities proved that the FeNx-Gmd were among the top five best-reported non-PGM-based catalysts. Theoretical calculations suggested the FeNx sites supported on carbon structure with fewer defects, corresponding to a higher graphitic degree, showing higher activity compared to the one with more defects. Moreover, the improvement in catalyst activity does not compromise stability since graphitic microdomains enhanced the corrosion resistance of the carbon support. As a result, after 10000 cycles of accelerated stability test, the FeNx-Gmd can still deliver a peak power density of 0.79 W cm-2 in the H2/O2 test, which was even higher than many catalysts at the initial stage. Unlike the reported strategy of reducing the ratio of more active but less stable pyrrolic N-coordinated Fe (S1) sites, this study provided an alternative pathway for breaking the activity-stability trade-off of the Fe-N-C catalyst without significantly reducing the ratio of S1 sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tusizi2006发布了新的文献求助10
刚刚
Chaos发布了新的文献求助30
刚刚
Csm完成签到,获得积分10
1秒前
田子廉发布了新的文献求助10
2秒前
独特的夏蓉完成签到,获得积分10
2秒前
田様应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
流沙完成签到,获得积分10
3秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
冰啊冰发布了新的文献求助10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
猪猪hero发布了新的文献求助10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
高级丹药师完成签到,获得积分10
4秒前
Hello应助程立雪采纳,获得10
5秒前
黄河鲤鱼儿完成签到,获得积分10
5秒前
段盼兰应助7wwww采纳,获得30
7秒前
傲娇芷雪完成签到,获得积分10
7秒前
7秒前
desperate完成签到,获得积分10
7秒前
稳赚赚完成签到,获得积分10
7秒前
大气的半双完成签到,获得积分10
7秒前
puzhongjiMiQ发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4520177
求助须知:如何正确求助?哪些是违规求助? 3962596
关于积分的说明 12281401
捐赠科研通 3625751
什么是DOI,文献DOI怎么找? 1995457
邀请新用户注册赠送积分活动 1031515
科研通“疑难数据库(出版商)”最低求助积分说明 922071