已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Decoding the Structure–Activity Relationship of the Dopamine D3 Receptor-Selective Ligands Using Machine and Deep Learning Approaches

多巴胺受体D3 多巴胺 解码方法 多巴胺受体 人工智能 受体 化学 心理学 神经科学 计算机科学 生物化学 电信
作者
Sung Joon Won,Benjoe Rey B. Visayas,Kuo Hao Lee,Rey Y. Capangpangan,Lei Shi
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00575
摘要

Dysfunctions of the dopamine D2 and D3 receptors (D2 and D3) are implicated in neuropsychiatric conditions such as Parkinson's disease, schizophrenia, and substance use disorders (SUDs). Evidence indicates that D3-selective ligands can effectively modulate reward pathways, offering potential in treating SUDs with reduced side effects. However, the high homology between D2 and D3 presents challenges in developing subtype-selective ligands, crucial for elucidating receptor-specific functions and developing targeted therapeutics. Here, to facilitate selective ligand discovery, we leveraged ligand-based quantitative structure-activity relationship (QSAR) modeling approaches to predict binding affinity at D2 and D3, as well as ligand selectivity for D3. We first queried training data from the ChEMBL database and performed a systematic curation process to enhance the data quality. We then developed QSAR models using eXtreme Gradient Boosting, random forest, and deep neural network (DNN) algorithms, with DNN benefiting from a novel hyperparameter optimization protocol. All models exhibited strong predictive performance, with DNN-based models slightly but consistently outperforming the tree-based models. Integrating predictions from all algorithms into a consensus metric further improved the accuracy and robustness. Notably, our selectivity models outperformed the affinity models, likely due to noise cancellation achieved by subtracting the binding affinities of the two receptors. The Shapley Additive explanations analysis revealed key pharmacophoric and physicochemical features critical for receptor affinity and selectivity, while molecular docking of representative D3-selective compounds highlighted the structural basis of D3 selectivity. These findings provide a robust framework for modeling QSARs at D2 and D3, advancing the rational design of targeted therapeutics for these receptors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
MOMO完成签到,获得积分10
3秒前
mx发布了新的文献求助30
6秒前
司空豁发布了新的文献求助10
7秒前
9秒前
胡蝶完成签到 ,获得积分10
10秒前
夜夜笙歌嫖断屌完成签到,获得积分10
10秒前
溯桀发布了新的文献求助10
12秒前
CipherSage应助怕孤单的觅波采纳,获得20
14秒前
小骆发布了新的文献求助10
14秒前
mx完成签到,获得积分20
18秒前
wuyd90发布了新的文献求助10
18秒前
冰魂应助谷雨秋采纳,获得10
19秒前
冰魂应助谷雨秋采纳,获得50
19秒前
jenningseastera应助谷雨秋采纳,获得50
19秒前
丘比特应助谷雨秋采纳,获得10
19秒前
dawnfrf应助谷雨秋采纳,获得50
19秒前
魏伯安发布了新的文献求助10
20秒前
20秒前
arcremnant完成签到,获得积分10
20秒前
小骆完成签到,获得积分10
23秒前
科研小垃圾完成签到,获得积分10
23秒前
高大的友梅完成签到 ,获得积分10
24秒前
25秒前
peanut完成签到 ,获得积分10
26秒前
蒙蒙完成签到 ,获得积分10
27秒前
张启完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
30秒前
韩凡发布了新的文献求助30
31秒前
lizzie发布了新的文献求助10
35秒前
36秒前
务实的篙完成签到,获得积分10
39秒前
bkagyin应助轩轩采纳,获得10
41秒前
我要circulation完成签到,获得积分10
42秒前
tongser发布了新的文献求助10
46秒前
艾斯完成签到 ,获得积分10
46秒前
Sandy完成签到,获得积分10
48秒前
李健春完成签到 ,获得积分10
51秒前
52秒前
充电宝应助溯桀采纳,获得10
54秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881354
求助须知:如何正确求助?哪些是违规求助? 3423741
关于积分的说明 10735897
捐赠科研通 3148676
什么是DOI,文献DOI怎么找? 1737344
邀请新用户注册赠送积分活动 838802
科研通“疑难数据库(出版商)”最低求助积分说明 784087