清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Physics-Informed Graph Connected Element Model for Reservoir Connectivity Identification and Production Forecasting in CO2-EOR

鉴定(生物学) 计算机科学 图形 数据挖掘 理论计算机科学 生物 植物
作者
Yunfeng Xu,Hui Zhao,Deli Jia,Yuhui Zhou,Fankun Meng
标识
DOI:10.2118/224521-ms
摘要

Abstract This paper aims to develop a hybrid modeling framework that integrates the Connected Element Method (CEM), Graph Neural Networks (GNNs), and Physics-Informed Neural Networks (PINNs) to enhance reservoir connectivity identification and production forecasting in CO2-EOR operations. The framework addresses the limitations of traditional and purely data-driven models by ensuring physical consistency and improving predictive accuracy. The methodology incorporates three key components: (1) preprocessing reservoir data using CEM to extract physical parameters like transmissibility and connected pore volume, forming a graph representation of the reservoir; (2) employing GNNs with self-attention mechanisms to capture dynamic inter-well connectivity and heterogeneity; and (3) embedding material balance equations within PINNs to ensure that predictions adhere to fundamental physical laws. The framework is implemented using Python's TensorFlow library and validated using a reservoir model. The proposed PINN-GCEM framework demonstrated significant improvements in both accuracy and efficiency compared to LSTM and PINN-RPM models. PINN-GCEM achieved faster convergence and lower residual errors due to the integration of CEM preprocessing and GNNs, which effectively captured inter-well connectivity and reservoir heterogeneity. Validation results showed that PINN-GCEM's predictions closely matched actual production data, maintaining long-term stability and outperforming PINN-RPM, especially in capturing complex physical behaviors. Additionally, transmissibility predictions from PINN-GCEM were consistent with CEM history-matched results, highlighting its reliability for reconstructing connectivity fields. These findings demonstrate the framework's potential for optimizing CO2 injection strategies and production forecasting in real-time applications. This study introduces a novel combination of CEM, GNNs, and PINNs, providing a robust and physically consistent approach to reservoir modeling. By addressing the limitations of traditional and data-driven methods, the proposed framework offers an efficient and accurate solution for complex reservoir systems, contributing valuable insights to CO2-EOR optimization and reservoir engineering practices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
49秒前
勤恳缘分给勤恳缘分的求助进行了留言
54秒前
PGao发布了新的文献求助10
56秒前
剑指东方是为谁应助dental采纳,获得10
1分钟前
FERN0826完成签到 ,获得积分10
1分钟前
一只狗东西完成签到 ,获得积分10
1分钟前
PGao完成签到,获得积分10
1分钟前
3分钟前
勤恳缘分发布了新的文献求助10
3分钟前
方白秋完成签到,获得积分10
3分钟前
我是笨蛋完成签到 ,获得积分10
3分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
如意竺完成签到,获得积分10
4分钟前
勤恳缘分完成签到,获得积分10
4分钟前
钱念波发布了新的文献求助10
4分钟前
huangzsdy完成签到,获得积分10
5分钟前
钱念波完成签到,获得积分10
5分钟前
mouse_pear完成签到 ,获得积分10
5分钟前
月儿完成签到 ,获得积分10
5分钟前
foyefeng完成签到 ,获得积分10
5分钟前
Yolenders完成签到 ,获得积分10
6分钟前
阿明完成签到,获得积分10
6分钟前
多亿点完成签到 ,获得积分10
6分钟前
Orange应助小路采纳,获得10
6分钟前
7分钟前
小路发布了新的文献求助10
7分钟前
Hello应助Stellarshi517采纳,获得10
7分钟前
小路完成签到,获得积分10
7分钟前
Shine完成签到 ,获得积分10
7分钟前
Eric800824完成签到 ,获得积分10
9分钟前
欢呼的茗茗完成签到 ,获得积分10
10分钟前
sysi完成签到 ,获得积分10
10分钟前
义气雁完成签到 ,获得积分10
10分钟前
10分钟前
Stellarshi517发布了新的文献求助10
11分钟前
baobeikk完成签到,获得积分10
11分钟前
ldjldj_2004完成签到 ,获得积分10
11分钟前
haprier完成签到 ,获得积分10
11分钟前
jun完成签到,获得积分10
11分钟前
快乐随心完成签到 ,获得积分10
11分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825008
求助须知:如何正确求助?哪些是违规求助? 3367346
关于积分的说明 10445264
捐赠科研通 3086687
什么是DOI,文献DOI怎么找? 1698201
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769907