Physics-Informed Graph Connected Element Model for Reservoir Connectivity Identification and Production Forecasting in CO2-EOR

鉴定(生物学) 计算机科学 图形 数据挖掘 理论计算机科学 生物 植物
作者
Yunfeng Xu,Hui Zhao,Deli Jia,Yuhui Zhou,Fankun Meng
标识
DOI:10.2118/224521-ms
摘要

Abstract This paper aims to develop a hybrid modeling framework that integrates the Connected Element Method (CEM), Graph Neural Networks (GNNs), and Physics-Informed Neural Networks (PINNs) to enhance reservoir connectivity identification and production forecasting in CO2-EOR operations. The framework addresses the limitations of traditional and purely data-driven models by ensuring physical consistency and improving predictive accuracy. The methodology incorporates three key components: (1) preprocessing reservoir data using CEM to extract physical parameters like transmissibility and connected pore volume, forming a graph representation of the reservoir; (2) employing GNNs with self-attention mechanisms to capture dynamic inter-well connectivity and heterogeneity; and (3) embedding material balance equations within PINNs to ensure that predictions adhere to fundamental physical laws. The framework is implemented using Python's TensorFlow library and validated using a reservoir model. The proposed PINN-GCEM framework demonstrated significant improvements in both accuracy and efficiency compared to LSTM and PINN-RPM models. PINN-GCEM achieved faster convergence and lower residual errors due to the integration of CEM preprocessing and GNNs, which effectively captured inter-well connectivity and reservoir heterogeneity. Validation results showed that PINN-GCEM's predictions closely matched actual production data, maintaining long-term stability and outperforming PINN-RPM, especially in capturing complex physical behaviors. Additionally, transmissibility predictions from PINN-GCEM were consistent with CEM history-matched results, highlighting its reliability for reconstructing connectivity fields. These findings demonstrate the framework's potential for optimizing CO2 injection strategies and production forecasting in real-time applications. This study introduces a novel combination of CEM, GNNs, and PINNs, providing a robust and physically consistent approach to reservoir modeling. By addressing the limitations of traditional and data-driven methods, the proposed framework offers an efficient and accurate solution for complex reservoir systems, contributing valuable insights to CO2-EOR optimization and reservoir engineering practices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代依凝发布了新的文献求助10
刚刚
猪猪hero发布了新的文献求助10
刚刚
zz完成签到 ,获得积分10
刚刚
眼睛大的可乐完成签到,获得积分10
刚刚
1秒前
小天空完成签到,获得积分10
1秒前
泽泽完成签到,获得积分20
1秒前
da1234完成签到,获得积分10
1秒前
老王发布了新的文献求助10
1秒前
赘婿应助爱睡午觉采纳,获得10
2秒前
丘丘发布了新的文献求助10
2秒前
嘻嘻嘻发布了新的文献求助30
2秒前
俏皮巧荷关注了科研通微信公众号
3秒前
寒空完成签到,获得积分10
3秒前
3秒前
xxxx发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助要吃虾饺采纳,获得10
4秒前
董乐发布了新的文献求助10
4秒前
lilili完成签到,获得积分20
4秒前
4秒前
今后应助小羊苏西采纳,获得10
5秒前
坦率的匪应助危机的井采纳,获得10
5秒前
内向寒云发布了新的文献求助10
5秒前
5秒前
5秒前
李沐唅完成签到 ,获得积分10
5秒前
6秒前
猪猪hero发布了新的文献求助10
6秒前
深情安青应助YY采纳,获得10
6秒前
7秒前
7秒前
sean发布了新的文献求助10
8秒前
科研通AI2S应助陆宇豪采纳,获得30
9秒前
青树柠檬完成签到 ,获得积分10
9秒前
9秒前
Xuan完成签到,获得积分10
9秒前
9秒前
内向芒果发布了新的文献求助10
10秒前
平淡的翅膀完成签到 ,获得积分10
11秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062314
求助须知:如何正确求助?哪些是违规求助? 3601034
关于积分的说明 11436315
捐赠科研通 3324243
什么是DOI,文献DOI怎么找? 1827632
邀请新用户注册赠送积分活动 898152
科研通“疑难数据库(出版商)”最低求助积分说明 818938