Short-Term Load Forecasting and Associated Weather Variables Prediction Using ResNet-LSTM Based Deep Learning

计算机科学 期限(时间) 天气预报 残差神经网络 人工智能 深度学习 机器学习 气象学 地理 量子力学 物理
作者
Xinfang Chen,Weiran Chen,Venkata Dinavahi,Yiqing Liu,Jilin Feng
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 5393-5405 被引量:44
标识
DOI:10.1109/access.2023.3236663
摘要

Short-term load forecasting is mainly utilized in control centers to explore the changing patterns of consumer loads and predict the load value at a certain time in the future. It is one of the key technologies for the smart grid implementation. The load parameters are affected by multi-dimensional factors. To sufficiently exploit the time series characteristics in load data and improve the accuracy of load forecasting, a hybrid model based on Residual Neural network (ResNet) and Long Short-Term Memory (LSTM) is proposed in this paper. First, the data with multiple feature parameters is reconstructed and input into ResNeT network for feature extraction. Second, the extracted feature vector is used as the input of LSTM for short-term load forecasting. Lastly, a practical example is used to compare this method with other models, which verifies the feasibility and superiority of input parameter feature extraction, and shows that the proposed combined method has higher prediction accuracy. In addition, this paper also carries out prediction experiments on the variables in the weather influencing factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lw完成签到,获得积分10
1秒前
1秒前
丘比特应助普外科老白采纳,获得10
1秒前
2秒前
capricorn完成签到,获得积分20
2秒前
4秒前
Ava应助林读书采纳,获得10
4秒前
唐诗阅完成签到,获得积分10
4秒前
5秒前
喜宝发布了新的文献求助10
6秒前
Feix发布了新的文献求助10
7秒前
ss完成签到,获得积分10
7秒前
老狗发布了新的文献求助10
9秒前
酷波er应助王浩宇采纳,获得10
9秒前
10秒前
科研通AI5应助刘敏小七采纳,获得10
10秒前
VDC完成签到,获得积分0
11秒前
12秒前
邱邱完成签到,获得积分20
13秒前
思源应助Ailin采纳,获得10
13秒前
14秒前
今后应助魈maker采纳,获得10
14秒前
有魅力的念烟完成签到 ,获得积分10
14秒前
科研通AI5应助破晓采纳,获得10
14秒前
科研通AI2S应助xuyan采纳,获得10
17秒前
18秒前
莫一城发布了新的文献求助10
18秒前
水水完成签到,获得积分10
18秒前
18秒前
19秒前
老狗完成签到,获得积分10
20秒前
魏师完成签到,获得积分0
20秒前
21秒前
勇敢牛牛发布了新的文献求助30
22秒前
22秒前
青灿笑发布了新的文献求助10
22秒前
24秒前
morlison完成签到,获得积分10
24秒前
25秒前
沉静的煎蛋完成签到,获得积分10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334596
关于积分的说明 10271003
捐赠科研通 3051046
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802571
科研通“疑难数据库(出版商)”最低求助积分说明 760777