Degradation behavior of galvanostatic and galvanodynamic cells for hydrogen production from high temperature electrolysis of water

电解质 制氢 过电位 材料科学 电解 降级(电信) 电解槽 高温电解 可再生能源 电解水 电化学 储能 化学工程 电极 化学 热力学 电气工程 物理 有机化学 物理化学 工程类 功率(物理)
作者
Cameron Priest,Nicholas Kane,Qian Zhang,Joshua Gomez,Jeremy Hartvigsen,Lu‐Cun Wang,Dong Ding,Micah Casteel,Gang Wu
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:86: 374-381 被引量:2
标识
DOI:10.1016/j.ijhydene.2024.08.019
摘要

High temperature electrolysis of water using solid oxide electrochemical cells (SOEC) is a promising technology for hydrogen production with high energy efficiency and may promote decarbonization when coupled with renewable energy sources and excess heat from nuclear reactors. Apart from the technoeconomic considerations, commercial deployment of this technology critically depends on the long-term performance and durability of SOEC cells/stacks, especially under dynamic operations to withstand the intermittency of renewable energy. Herein, SOEC operation was conducted under galvanodynamic conditions and compared with galvanostatic cells to examine the effect on degradation behavior at an average current density of −0.75 A cm−2 at 750 °C. While dynamic operation shows no significant impact on the overall degradation rates compared to constant current operation, minor performance improvement was observed at potentials above 1.5 V when switched to galvanodynamic mode. The relatively lower overpotential during dynamic operation could not be explained by the negligible changes in the electrochemical impedance or cell temperature. Multiphysics modeling reveals that the oxygen partial pressure (PO2) in the electrolyte oscillates with the alternating current density under dynamic operations. The minor improvement in cell performance under dynamic mode might be associated with the relatively lower PO2 buildup as compared with that under galvanostatic operation. In addition, dynamic operation at high frequencies could effectively lower the extreme PO2 in the electrolyte, thus relieving stresses in the cells and alleviating cell degradation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
7秒前
安静碧灵发布了新的文献求助10
8秒前
落后志泽完成签到,获得积分10
8秒前
10秒前
10秒前
杨冰发布了新的文献求助10
11秒前
大模型应助雪白鸿涛采纳,获得10
11秒前
南宫映榕发布了新的文献求助30
13秒前
yl完成签到,获得积分10
13秒前
阿南发布了新的文献求助10
14秒前
领导范儿应助希希采纳,获得10
14秒前
17秒前
背后的傥发布了新的文献求助10
19秒前
打打应助俞绯采纳,获得10
19秒前
龍Ryu完成签到,获得积分10
21秒前
22秒前
23秒前
24秒前
hellokitty完成签到,获得积分10
25秒前
雨霧雲完成签到,获得积分10
27秒前
rose123456发布了新的文献求助10
28秒前
zhang完成签到,获得积分10
28秒前
maox1aoxin应助大胆秋灵采纳,获得30
28秒前
希希发布了新的文献求助10
30秒前
乐观之瑶发布了新的文献求助10
30秒前
33秒前
Owen应助ibigbird采纳,获得10
34秒前
36秒前
z7777777发布了新的文献求助10
38秒前
38秒前
39秒前
冷方荣完成签到 ,获得积分10
42秒前
邰归发布了新的文献求助10
43秒前
NexusExplorer应助斩妖凉采纳,获得10
44秒前
小二郎应助海豚采纳,获得10
45秒前
didi发布了新的文献求助10
45秒前
46秒前
HE完成签到 ,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780310
求助须知:如何正确求助?哪些是违规求助? 3325580
关于积分的说明 10223667
捐赠科研通 3040766
什么是DOI,文献DOI怎么找? 1668988
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648