Identification of susceptibility modules and characteristic genes to osteoarthritis by WGCNA

鉴定(生物学) 骨关节炎 基因 生物 遗传学 计算生物学 进化生物学 医学 生态学 病理 替代医学
作者
He-Jun Hu,Chao Kuang,Ru-Lin Deng,Zhi-Jun Zheng,Kang-Yan Liu,X Y Wei
出处
期刊:Annales De Biologie Clinique [John Libbey Eurotext]
卷期号:82 (4): 423-437
标识
DOI:10.1684/abc.2024.1913
摘要

The susceptibility modules and characteristic genes of patients with osteoarthritis (OA) were determined by weighted gene co-expression network analysis (WGCNA), and the role of immune cells in OA related microenvironment was analyzed. GSE98918 and GSE117999 data sets are from GEO database. R language was used to conduct difference analysis for the new data set after merging. The formation of gene co-expression network, screening of susceptibility modules and screening of core genes are all through WGCNA. GO and KEGG enrichment analyses were used for Hub genes. The characteristic genes of the disease were obtained by Lasso regression screening. SSGSEA was used to estimate immune cell abundance in sample and a series of correlation analyses were performed. WGCNA was used to form 6 gene co-expression modules. The yellow-green module is identified as the susceptible module of OA. 202 genes were identified as core genes. Finally, RHOT2, FNBP4 and NARF were identified as the characteristic genes of OA. The results showed that the characteristic genes of OA were positively correlated with plasmacytoid dendritic cells, NKT cells and immature dendritic cells, but negatively correlated with active B cells. MDSC were the most abundant immune cells in cartilage. This study identified the Hippo signaling pathway, mTOR signaling pathway, and three characteristic genes (RHOT2, FNBP4, NARF) as being associated with osteoarthritis (OA). These three genes are downregulated in the cartilage of OA patients and may serve as biomarkers for early diagnosis and targeted therapy. Proper regulation of immune cells may aid in the treatment of OA. Future research should focus on developing tools to detect these genes and exploring their therapeutic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酆百川完成签到,获得积分10
刚刚
LIN2QI完成签到,获得积分10
1秒前
菠萝汁完成签到,获得积分10
1秒前
Nansen完成签到 ,获得积分10
2秒前
2秒前
kaka完成签到,获得积分10
2秒前
追梦发布了新的文献求助10
3秒前
松鼠15111完成签到,获得积分10
3秒前
着急的绿草完成签到,获得积分10
3秒前
俭朴的世界完成签到 ,获得积分10
3秒前
yydsyyd完成签到 ,获得积分10
5秒前
活泼的大船完成签到,获得积分10
5秒前
胖达完成签到,获得积分10
5秒前
5秒前
狼牧羊城完成签到,获得积分10
5秒前
7秒前
佳宝完成签到,获得积分10
7秒前
不胜寒完成签到,获得积分10
9秒前
dou完成签到,获得积分10
9秒前
yabocai发布了新的文献求助10
11秒前
南山无梅落完成签到,获得积分10
11秒前
13秒前
FBH一号机完成签到,获得积分10
13秒前
Rambo完成签到,获得积分10
13秒前
14秒前
清澜庭完成签到,获得积分10
14秒前
14秒前
Abi完成签到,获得积分10
15秒前
善学以致用应助开心向真采纳,获得10
16秒前
云下完成签到 ,获得积分10
16秒前
Fashioner8351完成签到,获得积分10
16秒前
yanxueyi完成签到 ,获得积分10
17秒前
Bluse完成签到,获得积分10
17秒前
Owen应助感动城采纳,获得30
19秒前
王树茂完成签到,获得积分10
19秒前
selfevidbet完成签到,获得积分10
19秒前
K珑完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
jesi完成签到,获得积分10
20秒前
连冷安完成签到,获得积分10
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4243440
求助须知:如何正确求助?哪些是违规求助? 3776892
关于积分的说明 11856983
捐赠科研通 3431265
什么是DOI,文献DOI怎么找? 1883049
邀请新用户注册赠送积分活动 934999
科研通“疑难数据库(出版商)”最低求助积分说明 841470