亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DMSPS: Dynamically mixed soft pseudo-label supervision for scribble-supervised medical image segmentation

人工智能 计算机科学 像素 分割 编码器 特征(语言学) 图像分割 深度学习 注释 模式识别(心理学) 过程(计算) 哲学 语言学 操作系统
作者
Meng Han,Xiangde Luo,Xiangjiang Xie,Wenjun Liao,Shichuan Zhang,Tao Song,Guotai Wang,Shaoting Zhang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:97: 103274-103274 被引量:15
标识
DOI:10.1016/j.media.2024.103274
摘要

High performance of deep learning on medical image segmentation rely on large-scale pixel-level dense annotations, which poses a substantial burden on medical experts due to the laborious and time-consuming annotation process, particularly for 3D images. To reduce the labeling cost as well as maintain relatively satisfactory segmentation performance, weakly-supervised learning with sparse labels has attained increasing attentions. In this work, we present a scribble-based framework for medical image segmentation, called Dynamically Mixed Soft Pseudo-label Supervision (DMSPS). Concretely, we extend a backbone with an auxiliary decoder to form a dual-branch network to enhance the feature capture capability of the shared encoder. Considering that most pixels do not have labels and hard pseudo-labels tend to be over-confident to result in poor segmentation, we propose to use soft pseudo-labels generated by dynamically mixing the decoders' predictions as auxiliary supervision. To further enhance the model's performance, we adopt a two-stage approach where the sparse scribbles are expanded based on predictions with low uncertainties from the first-stage model, leading to more annotated pixels to train the second-stage model. Experiments on ACDC dataset for cardiac structure segmentation, WORD dataset for 3D abdominal organ segmentation and BraTS2020 dataset for 3D brain tumor segmentation showed that: (1) compared with the baseline, our method improved the average DSC from 50.46% to 89.51%, from 75.46% to 87.56% and from 52.61% to 76.53% on the three datasets, respectively; (2) DMSPS achieved better performance than five state-of-the-art scribble-supervised segmentation methods, and is generalizable to different segmentation backbones. The code is available online at: https://github.com/HiLab-git/DMSPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅的念烟完成签到 ,获得积分10
5秒前
6秒前
15秒前
16秒前
神仙没有草原完成签到,获得积分10
17秒前
17秒前
18秒前
21秒前
Carol_yl完成签到 ,获得积分10
22秒前
HaonanZhang发布了新的文献求助10
22秒前
22秒前
儒雅的念烟关注了科研通微信公众号
23秒前
阔达的松鼠完成签到 ,获得积分10
54秒前
blenx完成签到,获得积分10
55秒前
57秒前
Lucas应助yy采纳,获得30
58秒前
梁梁完成签到 ,获得积分10
58秒前
HaonanZhang发布了新的文献求助10
1分钟前
Li发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
酷波er应助儒雅的念烟采纳,获得10
1分钟前
希望天下0贩的0应助Li采纳,获得10
1分钟前
1分钟前
小天发布了新的文献求助30
1分钟前
CodeCraft应助薛建伟采纳,获得10
1分钟前
xq完成签到,获得积分10
1分钟前
orixero应助dcy采纳,获得10
1分钟前
2020发布了新的文献求助10
1分钟前
王晓卉完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
yy关注了科研通微信公众号
1分钟前
李彬发布了新的文献求助10
1分钟前
1分钟前
VirgoYn完成签到,获得积分10
1分钟前
薛建伟发布了新的文献求助10
1分钟前
dcy发布了新的文献求助10
1分钟前
2020完成签到,获得积分10
2分钟前
2分钟前
木有完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458934
求助须知:如何正确求助?哪些是违规求助? 4564862
关于积分的说明 14297161
捐赠科研通 4489918
什么是DOI,文献DOI怎么找? 2459415
邀请新用户注册赠送积分活动 1449081
关于科研通互助平台的介绍 1424578