An aero-engine remaining useful life prediction model based on clustering analysis and the improved GRU-TCN

聚类分析 计算机科学 航空发动机 数据挖掘 人工智能 工程类 机械工程
作者
Fudan Chen,Yang Yu,Y. G. Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
被引量:1
标识
DOI:10.1088/1361-6501/ad825a
摘要

Abstract Accurately predicting the remaining useful life (RUL) of engines is paramount for implementing effective preventive maintenance strategies, preventing injuries and fatalities caused by equipment failures, and significantly reducing routine repair and replacement costs. However, existing deep learning models often ignore the variable operating conditions in real engineering applications and do not sufficiently consider the interaction between time series and degradation laws, which directly leads to the inability to effectively extract to degradation feature extraction. To address this problem, this study developed a novel combined network model named CA-DRGRU-TTCN, aimed at accurately predicting the RUL of engines. Firstly, a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is used to identify multiple operating conditions, and incorporate the recognition results into the model as additional new features. The first degradation time point is determined by JS divergence. Secondly, the deep connectivity of the residual Gated Recurrent Unit (GRU) module is designed to extract deeper degradation features, and an improved TMSE loss function based on the first degradation time point is applied to Temporal Convolutional Networks (TCN) to better capture the dependency between the time series and the real degradation degree of the engine. Finally, experiment results on the C-MAPSS dataset show that the proposed method achieves better performance compared to existing state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emon完成签到,获得积分10
2秒前
bingo完成签到,获得积分10
3秒前
宁霸完成签到,获得积分0
3秒前
SilverPlane完成签到,获得积分10
3秒前
烟雨发布了新的文献求助10
3秒前
vivi发布了新的文献求助10
4秒前
RDQ完成签到,获得积分10
4秒前
专玩对抗路完成签到,获得积分10
5秒前
drslytherin完成签到,获得积分10
6秒前
KX2024完成签到,获得积分10
6秒前
wsqg123完成签到,获得积分10
7秒前
夜信完成签到,获得积分10
7秒前
学海行舟完成签到 ,获得积分10
8秒前
依人如梦完成签到 ,获得积分10
9秒前
烟雨完成签到,获得积分10
10秒前
long完成签到,获得积分10
10秒前
大气建辉完成签到 ,获得积分10
12秒前
yar完成签到 ,获得积分10
13秒前
16秒前
梦里虾米完成签到,获得积分10
18秒前
18秒前
chhzz完成签到 ,获得积分10
19秒前
19秒前
欢喜藏今发布了新的文献求助10
20秒前
方姿完成签到,获得积分10
20秒前
ZR14124完成签到,获得积分10
20秒前
蛀牙牙完成签到,获得积分10
21秒前
嘟嘟喂嘟嘟完成签到,获得积分10
23秒前
zheng完成签到 ,获得积分10
28秒前
yy14207发布了新的文献求助10
29秒前
duoduozs完成签到,获得积分10
29秒前
一白完成签到 ,获得积分10
29秒前
迷路凌柏完成签到 ,获得积分10
31秒前
江雁完成签到,获得积分10
31秒前
木子李完成签到 ,获得积分10
31秒前
2012csc完成签到 ,获得积分0
31秒前
英俊枫完成签到,获得积分10
33秒前
wbb完成签到 ,获得积分10
35秒前
竹叶青发布了新的文献求助10
35秒前
欢喜藏今完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513400
关于积分的说明 11167585
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875131
科研通“疑难数据库(出版商)”最低求助积分说明 804664