Automated machine learning-based prediction of microplastics induced impacts on methane production in anaerobic digestion

微塑料 厌氧消化 甲烷 环境科学 生化工程 预测建模 废水 生产(经济) 沼气 机器学习 环境工程 计算机科学 环境化学 化学 废物管理 生态学 工程类 生物 宏观经济学 经济
作者
Runze Xu,Jiashun Cao,Ye Tian,Suna Wang,Jingyang Luo,Bing‐Jie Ni,Fang Fang
出处
期刊:Water Research [Elsevier BV]
卷期号:223: 118975-118975 被引量:30
标识
DOI:10.1016/j.watres.2022.118975
摘要

Microplastics as emerging pollutants have been heavily accumulated in the waste activated sludge (WAS) during biological wastewater treatment, which showed significantly diverse impacts on the subsequent anaerobic sludge digestion for methane production. However, a robust modeling approach for predicting and unveiling the complex effects of accumulated microplastics within WAS on methane production is still missing. In this study, four automated machine learning (AutoML) approach was applied to model the effects of microplastics on anaerobic digestion processes, and integrated explainable analysis was explored to reveal the relationships between key variables (e.g., concentration, type, and size of microplastics) and methane production. The results showed that the gradient boosting machine had better prediction performance (mean squared error (MSE) = 17.0) than common neural networks models (MSE = 58.0), demonstrating that the AutoML algorithms succeeded in predicting the methane production and could select the best machine learning model without human intervention. Explainable analysis results indicated that the variable of microplastic types was more important than the variable of microplastic diameter and concentration. The existence of polystyrene was associated with higher methane production, whereas increasing microplastic diameter and concentration both inhibited methane production. This work also provided a novel modeling approach for comprehensively understanding the complex effects of microplastics on methane production, which revealed the dependence relationships between methane production and key variables and may be served as a reference for optimizing operational adjustments in anaerobic digestion processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyaner完成签到,获得积分10
1秒前
2秒前
空白发布了新的文献求助10
3秒前
yanghui发布了新的文献求助10
3秒前
痴情的靖柔完成签到 ,获得积分10
5秒前
xibei完成签到 ,获得积分10
6秒前
临江仙完成签到,获得积分10
9秒前
zmd完成签到,获得积分10
11秒前
大个应助木兆采纳,获得30
12秒前
上官若男应助wuqi采纳,获得10
14秒前
15秒前
清脆如娆完成签到 ,获得积分10
15秒前
feitian201861完成签到,获得积分10
16秒前
k sir发布了新的文献求助10
17秒前
17秒前
研友_89Nm7L完成签到,获得积分10
18秒前
Xxxuan发布了新的文献求助10
19秒前
hades发布了新的文献求助10
20秒前
啊咧咧完成签到 ,获得积分10
21秒前
王轶华完成签到,获得积分10
24秒前
大气映冬发布了新的文献求助10
24秒前
敖江风云完成签到,获得积分10
25秒前
25秒前
韦远侵完成签到,获得积分10
25秒前
小蘑菇应助k sir采纳,获得10
27秒前
cdercder应助Xxxuan采纳,获得10
27秒前
29秒前
温谷完成签到 ,获得积分10
30秒前
Future完成签到,获得积分10
30秒前
爱科研的佳慧完成签到,获得积分10
31秒前
32秒前
Gakay发布了新的文献求助10
34秒前
Future发布了新的文献求助20
34秒前
大气映冬完成签到,获得积分10
35秒前
威武的翠安完成签到 ,获得积分10
35秒前
小典发布了新的文献求助10
36秒前
36秒前
luckin发布了新的文献求助10
36秒前
阿鑫完成签到 ,获得积分10
37秒前
芭娜55完成签到 ,获得积分10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777773
求助须知:如何正确求助?哪些是违规求助? 3323295
关于积分的说明 10213571
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275