A lightweight network for abdominal multi-organ segmentation based on multi-scale context fusion and dual self-attention

联营 棱锥(几何) 背景(考古学) 分割 计算机科学 人工智能 计算机视觉 模式识别(心理学) 数据挖掘 生物 光学 物理 古生物学
作者
Miao Liao,Hongliang Tang,Xiong Li,Pandi Vijayakumar,Varsha Arya,Brij B. Gupta
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102401-102401 被引量:7
标识
DOI:10.1016/j.inffus.2024.102401
摘要

Segmenting the organs from abdominal CT images is a vital procedure for computer-aided diagnosis and treatment. Accurate and simultaneous segmentation of multiple abdominal organs remains challenging due to the complex structures, varying sizes, and fuzzy boundaries. Currently, most methods aiming at improving segmentation accuracy involve either deepening the network or employing large-scale models, which results in a heavy computation burden and a huge number of model parameters. It is difficult to deploy these methods in a medical environment. In this paper, we present a lightweight network based on multi-scale context fusion and dual self-attention. The dual self-attention mechanism is used to obtain target organ responses from channel domain, while also strengthening the correlation of global information from spatial domain. Considering the complex structure of abdominal organs, we design a multi-scale context fusion module comprised of a pyramid pooling (PP) and an anisotropic strip pooling (ASP). The PP is used to acquire rich local features by aggregating context information from different receptive fields, while the ASP is proposed to extract strip features in different directions to help the network establish long-distance dependencies and capture the characteristics of elongated organs, such as pancreas and spleen. Moreover, a residual module is designed in the skip connection to learn features related to edges and small objects. The proposed method achieves averaged Dice of 90.1% and 82.5% on the FLARE and BTCV datasets, respectively, with only 6.25M model parameters and 21.40G FLOPs, outperforming many state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的念文完成签到,获得积分10
1秒前
cdercder应助12采纳,获得10
2秒前
希望天下0贩的0应助舒夜采纳,获得10
3秒前
DAMAOMI发布了新的文献求助10
4秒前
蛋炒饭i发布了新的文献求助10
4秒前
我是老大应助温温采纳,获得10
5秒前
7秒前
7秒前
笑点低的孤丹完成签到 ,获得积分10
9秒前
9秒前
感动的雁易完成签到 ,获得积分10
10秒前
雨泽发布了新的文献求助10
12秒前
14秒前
俏皮梦桃发布了新的文献求助10
14秒前
小冯完成签到,获得积分20
14秒前
香蕉觅云应助黄雅静采纳,获得10
14秒前
14秒前
15秒前
15秒前
15秒前
pang发布了新的文献求助30
18秒前
舒夜发布了新的文献求助10
19秒前
19秒前
归尘发布了新的文献求助10
20秒前
谢青发布了新的文献求助10
20秒前
20秒前
23秒前
23秒前
23秒前
mofei完成签到,获得积分10
26秒前
pang完成签到,获得积分20
27秒前
胡图图完成签到 ,获得积分10
27秒前
xxddw发布了新的文献求助10
28秒前
28秒前
桐桐应助北城采纳,获得10
30秒前
32秒前
科研通AI5应助文艺的紫萍采纳,获得10
33秒前
岁月静好Taoyi完成签到 ,获得积分10
36秒前
王木木发布了新的文献求助10
36秒前
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798061
求助须知:如何正确求助?哪些是违规求助? 3343561
关于积分的说明 10316564
捐赠科研通 3060257
什么是DOI,文献DOI怎么找? 1679407
邀请新用户注册赠送积分活动 806560
科研通“疑难数据库(出版商)”最低求助积分说明 763244