Efficient Machine Learning Model Focusing on Active Sites for the Discovery of Bifunctional Oxygen Electrocatalysts in Binary Alloys

双功能 材料科学 二进制数 合金 密度泛函理论 活动站点 氧气 工作(物理) 纳米技术 化学物理 计算机科学 催化作用 计算化学 热力学 物理 有机化学 冶金 化学 算术 数学 生物化学
作者
Chao Wang,Bing Wang,Changhao Wang,Zhipeng Chang,Mengqi Yang,Ru‐Zhi Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (13): 16050-16061 被引量:1
标识
DOI:10.1021/acsami.3c17377
摘要

The distinctive characteristics of alloy catalysts, encompassing composition, structure, and modifiable adsorption sites, present significant potential for the development of highly efficient electrocatalysts for oxygen evolution/reduction reactions [oxygen evolution reactions (OERs)/oxygen reduction reactions (ORRs)]. Machine learning (ML) methods can quickly establish the relationship between material features and catalytic activity, thus accelerating the development of alloy electrocatalysts. However, the current abundance of features presents a crucial challenge in selecting the most pertinent ones. In this study, we explored seven intrinsic features directly derived from the material's structure, with a specific focus on the chemical environment of active sites and their nearest neighbors. An accurate and efficient ML model to predict potential bifunctional oxygen electrocatalysts based on the intrinsic features of AB-type alloy active sites and intermediate free energies in the OERs/ORRs was established. These features possess clear physical and chemical meanings, closely linked to the electronic and geometric structures of active sites and neighboring atoms, thereby providing indispensable insights for the discovery of high-performance electrocatalysts. The ML model achieved R2 scores of 0.827, 0.913, and 0.711 for the predicted values of the three intermediate (OH, O, OOH) free energies, with corresponding mean absolute errors of 0.175, 0.242, and 0.200 eV, respectively. These results indicate that the ML model exhibits high accuracy in predicting the intermediate free energies. Furthermore, the ML model exhibited a prediction efficiency 150,000 times faster than traditional density functional theory calculations. This work will offer valuable insights and a framework for facilitating the rapid design of potential catalysts by ML methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆的如凡完成签到 ,获得积分10
刚刚
刚刚
老黑完成签到,获得积分10
2秒前
周浩宇发布了新的文献求助10
3秒前
一禾发布了新的文献求助10
3秒前
小蘑菇应助虚拟的荔枝采纳,获得10
6秒前
诸天真完成签到,获得积分10
7秒前
7秒前
gtx发布了新的文献求助10
7秒前
TT完成签到,获得积分10
8秒前
10秒前
14秒前
CC完成签到 ,获得积分10
14秒前
上官若男应助starry采纳,获得10
15秒前
Ll_l完成签到,获得积分10
16秒前
17秒前
情怀应助Max采纳,获得10
17秒前
高槻泉完成签到 ,获得积分10
19秒前
20秒前
orixero应助丁牛青采纳,获得10
20秒前
23秒前
zjl完成签到,获得积分20
25秒前
26秒前
gtx完成签到 ,获得积分10
28秒前
28秒前
Max发布了新的文献求助10
29秒前
辣椒炒肉1发布了新的文献求助10
33秒前
33秒前
33秒前
杨文海发布了新的文献求助10
34秒前
Hang发布了新的文献求助10
35秒前
velen发布了新的文献求助20
38秒前
领导范儿应助DYH采纳,获得10
39秒前
杨文海完成签到,获得积分20
40秒前
任盈盈完成签到,获得积分10
40秒前
jenningseastera应助孙季沅采纳,获得10
40秒前
40秒前
酷波er应助Hang采纳,获得10
41秒前
汪汪别吃了完成签到,获得积分10
42秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781842
求助须知:如何正确求助?哪些是违规求助? 3327435
关于积分的说明 10231080
捐赠科研通 3042297
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758808