摘要
ChemistrySelectVolume 9, Issue 14 e202305115 Research Article Triarylborane-Triphenylamine Based Donor-Acceptor Fluorophores as pH and Fluoride Sensors Chinna Ayya Swamy P, Corresponding Author Chinna Ayya Swamy P [email protected] Main Group Organometallic Optoelectronic Materials and Catalysis Lab, National Institute of Technology, Department of Chemistry, Calicut, 673601 IndiaSearch for more papers by this authorArchana V. Raveendran, Archana V. Raveendran Main Group Organometallic Optoelectronic Materials and Catalysis Lab, National Institute of Technology, Department of Chemistry, Calicut, 673601 IndiaSearch for more papers by this author Chinna Ayya Swamy P, Corresponding Author Chinna Ayya Swamy P [email protected] Main Group Organometallic Optoelectronic Materials and Catalysis Lab, National Institute of Technology, Department of Chemistry, Calicut, 673601 IndiaSearch for more papers by this authorArchana V. Raveendran, Archana V. Raveendran Main Group Organometallic Optoelectronic Materials and Catalysis Lab, National Institute of Technology, Department of Chemistry, Calicut, 673601 IndiaSearch for more papers by this author First published: 09 April 2024 https://doi.org/10.1002/slct.202305115Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract We have accomplished the synthesis and characterization of three novel TPA-TAB donor-acceptor conjugate which is capable of dual sensing the pH variations as well as fluoride ions. All the molecules show a turn-on response towards acidic pH, which is facilitated by the presence of donor type NMe2 unit, which are capable of protonation due disruption of photoinduced electron transfer (PET). Three novel triarylborane (TAB)-triphenylamine (TPA)-based fluorophores functionalized with an NMe2 moiety capable of sensing acidic pH variations have been developed. The pH sensing ability relies on the phenomenon of PET. Characterization of synthesized molecules 1–3 was conducted using various analytical techniques, and their photophysical properties were investigated. The TAB-TPA conjugates exhibit solvatochromic fluorescence emission, validating their Donor-Acceptor character and indicating an Intramolecular Charge Transfer (ICT) process. UV-Vis and fluorescence spectroscopic studies revealed that compound 2 exhibits bathochromic shifts and larger Stoke's shift values compared to 1 and 3, attributed to the presence of additional donor groups such as two NMe2 units. pH titrations showed a turn-on fluorescence response towards acidic pH for all molecules, with emission properties remaining unaltered under alkaline pH conditions. The sensing mechanism is attributed to protonation of the −NMe2 unit, disabling existing PET and forming new ICT, leading to enhanced emission for all molecules. Additionally, these conjugates demonstrated recognition of fluoride ions due to the empty p-orbital on the boron center, showing similar sensing ability across all conjugates and selective recognition of fluoride ions without interference from other anions. Conflict of interests The authors declare no competing financial interests. Open Research Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. Keywords: Triarylborane, Fluoride Sensing, Donor-Acceptor Conjugates, pH Sensing. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description slct202305115-sup-0001-misc_information.pdf4.2 MB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 1aD. Wencel, T. Abel, C. McDonagh, Anal. Chem. 2014, 86, 15–29; 10.1021/ac4035168 CASPubMedWeb of Science®Google Scholar 1bY. Tang, L. Zhen, J. Liu, J. Wu, Anal. Chem. 2013, 85, 2787–2794. 10.1021/ac303282j CASPubMedWeb of Science®Google Scholar 2 2aL. Manjakkal, D. Szwagierczak, R. Dahiya, Prog. Mater. Sci. 2020, 109, 100635; 10.1016/j.pmatsci.2019.100635 CASWeb of Science®Google Scholar 2bM. T. Ghoneim, A. Nguyen, N. Dereje, J. Huang, G. C. Moore, P. J. Murzynowski, C. Dagdeviren, Chem. Rev. 2019, 119, 5248–5297; 10.1021/acs.chemrev.8b00655 CASPubMedWeb of Science®Google Scholar 2cF. Vivaldi, P. Salvo, N. Poma, A. Bonini, D. Biagini, L. Del Noce, B. Melai, F. Lisi, F. D. Francesco, Chemosensors 2021, 9, 33; 10.3390/chemosensors9020033 CASWeb of Science®Google Scholar 2dG. Scheiblin, R. Coppard, R. M. Owens, P. Mailley, G. G. Malliaras, Adv. Mater. Technol. 2017, 2, 1600141; 10.1002/admt.201600141 Web of Science®Google Scholar 2eA. S. Jeevarajan, S. Vani, T. D. Taylor, M. M. Anderson, Biotechnol. Bioeng. 2002, 78, 467–472; 10.1002/bit.10212 CASPubMedWeb of Science®Google Scholar 2fC. Staudinger, M. Strobl, J. Breininger, I. Klimant, S. M. Borisov, Sens. Actuators B: Chem. 2019, 282, 204–217; 10.1016/j.snb.2018.11.048 CASWeb of Science®Google Scholar 2gS. T. Lee, B. Aneeshkumar, P. Radhakrishnan, C. P. G. Vallabhan, V. P. N. Nampoori, Opt. Commun. 2002, 205, 253–256; 10.1016/S0030-4018(02)01406-2 Web of Science®Google Scholar 2hE. J. Netto, J. I. Peterson, M. McShane, V. Hampshire, Sens. Actuators B: Chem. 1995, 29, 157–163. 10.1016/0925-4005(95)01677-5 CASWeb of Science®Google Scholar 3 3aM. T. Ghoneim, A. Nguyen, N. Dereje, J. Huang, G. C. Moore, P. J. Murzynowski, C. Dagdeviren, Chem. Rev. 2019, 119, 5248–5297; 10.1021/acs.chemrev.8b00655 CASPubMedWeb of Science®Google Scholar 3bA. Steinegger, O. S. Wolfbeis, S. M. Borisov, Chem. Rev. 2020, 120, 12357–12489; 10.1021/acs.chemrev.0c00451 CASPubMedWeb of Science®Google Scholar 3cX. D. Wang, O. S. Wolfbeis, Anal. Chem. 2019, 92, 397–430; 10.1021/acs.analchem.9b04708 PubMedWeb of Science®Google Scholar 3dM. Shamsipur, A. Barati, Z. Nematifar, J. Photochem. Photobiol. C: Photochem. Rev. 2019, 39, 76–141; 10.1016/j.jphotochemrev.2019.03.001 CASWeb of Science®Google Scholar 3eA. Steinegger, O. S. Wolfbeis, S. M. Borisov, Chem. Rev. 2020, 120, 12357–12489; 10.1021/acs.chemrev.0c00451 CASPubMedWeb of Science®Google Scholar 3fM. Shamsipur, A. Barati, Z. Nematifar, J. Photochem. Photobiol. C: Photochem. Rev. 2019, 39, 76–141; 10.1016/j.jphotochemrev.2019.03.001 CASWeb of Science®Google Scholar 3gM. Zhang, R. Su, J. Zhong, L. Fei, W. Cai, Q. Guan, W. Li, N. Li, Y. Chen, L. Cai, Q. Xu, Nano Res. 2019, 12, 815–821. 10.1007/s12274-019-2293-z CASWeb of Science®Google Scholar 4 4aX. Ye, Y. Xiang, Q. Wang, Z. Li, Z. Liu, Small 2019, 15, 1901673; 10.1002/smll.201901673 CASWeb of Science®Google Scholar 4bL. Wu, J. Liu, P. Li, B. Tang, T. D. James, Chem. Soc. Rev. 2021, 50, 702–734; 10.1039/D0CS00861C CASPubMedWeb of Science®Google Scholar 4cP. Yang, Z. Zhu, T. Zhang, W. Zhang, W. Chen, Y. Cao, M. Chen, X. Zhou, Small 2019, 15, 1902823; 10.1002/smll.201902823 CASWeb of Science®Google Scholar 4dX. Tian, L. C. Murfin, L. Wu, S. E. Lewis, T. D. James, Chem. Sci. 2021, 12, 3406–3426; 10.1039/D0SC06928K CASPubMedWeb of Science®Google Scholar 4eM. Zhang, R. Su, J. Zhong, L. Fei, W. Cai, Q. Guan, W. Li, N. Li, Y. Chen, L. Cai, Q. Xu, Nano Res. 2019, 12, 815–821. 10.1007/s12274-019-2293-z CASWeb of Science®Google Scholar 5 5aS. Vullo, S. A. Kellenberger, Pharmacol. Res. 2020, 154, 104166; 10.1016/j.phrs.2019.02.005 CASPubMedWeb of Science®Google Scholar 5bJ. Wang, Y. Geng, Y. Shen, W. Shi, W. Xu, S. Xu, Sens. Actuators B: Chem. 2019, 290, 527–534; 10.1016/j.snb.2019.03.149 CASWeb of Science®Google Scholar 5cL. Wu, J. Liu, P. Li, B. Tang, T. D. James, Chem. Soc. Rev. 2021, 50, 702–734; 10.1039/D0CS00861C CASPubMedWeb of Science®Google Scholar 5dJ. L. Zhu, Z. Xu, Y. Yang, L. Xu, Chem. Commun. 2019, 55, 6629–6671; 10.1039/C9CC03299A CASPubMedWeb of Science®Google Scholar 5eL. Manjakkal, S. Dervin, R. Dahiya, RSC Adv. 2020, 10, 8594–8617; 10.1039/D0RA00016G CASPubMedWeb of Science®Google Scholar 5fX. Tian, L. C. Murfin, L. Wu, S. E. Lewis, T. D. James, Chem. Sci. 2021, 12, 3406–3426. 10.1039/D0SC06928K CASPubMedWeb of Science®Google Scholar 6 6aA. I. Said, N. I. Georgiev, V. B. Bojinov, Dyes Pigm. 2019, 162, 377–384; 10.1016/j.dyepig.2018.10.030 CASWeb of Science®Google Scholar 6bS. Radunz, E. Andresen, C. Würth, A. Koerdt, H. R. Tschiche, U. Resch-Genger, Anal. Chem. 2019, 91, 7756–7764; 10.1021/acs.analchem.9b01174 CASPubMedWeb of Science®Google Scholar 6cS. Munan, M. Ali, R. Yadav, K. Mapa, A. Samanta, Anal. Chem. 2022, 94, 11633–11642; 10.1021/acs.analchem.2c02177 CASPubMedWeb of Science®Google Scholar 6dS. L. Yang, G. Li, M. Y. Guo, W. S. Liu, R. Bu, E. Q. Gao, J. Am. Chem. Soc. 2021, 143, 8838–8848; 10.1021/jacs.1c03432 CASPubMedWeb of Science®Google Scholar 6eB. Dong, W. Song, Y. Lu, X. Kong, Chem. Commun. 2019, 55, 10776–10779. 10.1039/C9CC03114F CASPubMedWeb of Science®Google Scholar 7 7aY. Li, Y. Liu, Q. Li, X. Zeng, T. Tian, W. Zhou, Y. Cui, X. Wang, X. Cheng, Q. Ding, X. Wang, Chem. Sci. 2020, 11, 2621–2626; 10.1039/C9SC06567A Web of Science®Google Scholar 7bL. Wang, J. Hiblot, C. Popp, L. Xue, K. Johnsson, Angew. Chem. Int. Ed. 2020, 59, 21880–21884; 10.1002/anie.202008357 CASPubMedWeb of Science®Google Scholar 7cJ. B. Li, H. W. Liu, T. Fu, R. Wang, X. B. Zhang, W. Tan, Trends Chem. 2019, 1, 224–234; 10.1016/j.trechm.2019.03.002 CASPubMedGoogle Scholar 7dY. Su, B. Yu, S. Wang, H. Cong, Y. Shen, Biomaterials 2021, 271, 120717; 10.1016/j.biomaterials.2021.120717 CASPubMedWeb of Science®Google Scholar 7eP. Liu, X. Mu, X. D. Zhang, D. Ming, Bioconjugate Chem. 2019, 31, 260–275; 10.1021/acs.bioconjchem.9b00610 PubMedWeb of Science®Google Scholar 7fS. Wang, B. Li, F. Zhang, ACS Cent. Sci. 2020, 6, 1302–1316. 10.1021/acscentsci.0c00544 CASPubMedWeb of Science®Google Scholar 8 8aZ. Lei, F. Zhang, Angew. Chem. Int. Ed. 2021, 60, 16294–16308; 10.1002/anie.202007040 CASPubMedWeb of Science®Google Scholar 8bY. Yue, F. Huo, F. Cheng, X. Zhu, T. Mafireyi, R. M. Strongin, C. Yin, Chem. Soc. Rev. 2019, 48, 4155–4177; 10.1039/C8CS01006D CASPubMedWeb of Science®Google Scholar 8cS. H. Park, N. Kwon, J. H. Lee, J. Yoon, I. Shin, Chem. Soc. Rev. 2020, 49, 143–179. 10.1039/C9CS00243J CASPubMedWeb of Science®Google Scholar 9 9aJ. Kim, T. Lee, J. Y. Ryu, Y. H. Lee, J. Lee, J. Jung, M. H. Lee, Organometallics 2020, 39, 2235–2244; 10.1021/acs.organomet.0c00185 CASWeb of Science®Google Scholar 9bA. V. Raveendran, P. C. A. Swamy, New J. Chem. 2022, 46, 20299–20310; 10.1039/D2NJ04439K CASWeb of Science®Google Scholar 9cA. Kumar, H. Y. Shin, T. Lee, J. Jung, B. J. Jung, M. H. Lee, Chem. Eur. J. 2020, 26, 16793–16801; 10.1002/chem.202002968 CASPubMedWeb of Science®Google Scholar 9dJ. Huo, H. Wang, S. Li, H. Shi, Y. Tang, B. Z. Tang, Chem. Rec. 2020, 20, 556–569; 10.1002/tcr.201900068 CASPubMedWeb of Science®Google Scholar 9eS. M. Berger, T. B. Marder, Mater. Horiz. 2022, 9, 112–120; 10.1039/D1MH00696G CASPubMedWeb of Science®Google Scholar 9fA. K. Narsaria, F. Rauch, J. Krebs, P. Endres, A. Friedrich, I. Krummenacher, H. Braunschweig, M. Finze, J. Nitsch, F. M. Bickelhaupt, T. B. Marder, Adv. Funct. Mater. 2020, 30, 2002064; 10.1002/adfm.202002064 CASPubMedWeb of Science®Google Scholar 9gY. Shirota, H. Kageyama, Chem. Rev. 2007, 107, 953–1010; 10.1021/cr050143+ CASPubMedWeb of Science®Google Scholar 9hS. Griesbeck, E. Michail, C. Wang, H. Ogasawara, S. Lorenzen, L. Gerstner, T. Zang, J. Nitsch, Y. Sato, R. Bertermann, M. Taki, Chem. Sci. 2019, 10, 5405–5422; 10.1039/C9SC00793H CASPubMedWeb of Science®Google Scholar 9iS. Griesbeck, E. Michail, F. Rauch, H. Ogasawara, C. Wang, Y. Sato, R. M. Edkins, Z. Zhang, M. Taki, C. Lambert, S. Yamaguchi, Chem. Eur. J. 2019, 25, 13164–13175; 10.1002/chem.201902461 CASPubMedWeb of Science®Google Scholar 9jR. Teerasarunyanon, L. C. Wilkins, G. Park, F. P. Gabbaï, Dalton Trans. 2019, 48, 14777–14782; 10.1039/C9DT03238J CASPubMedWeb of Science®Google Scholar 9kG. Park, F. P. Gabbai, Angew. Chem. Int. Ed. 2020, 59, 5298–5302; 10.1002/anie.201914958 CASPubMedWeb of Science®Google Scholar 9lN. Baser-Kirazli, R. A. Lalancette, F. Jakle, Organometallics 2021, 40, 520–528; 10.1021/acs.organomet.0c00779 CASWeb of Science®Google Scholar 9mY. Yu, B. Meng, F. Jäkle, J. Liu, L. Wang, Chem. Eur. J. 2020, 26, 873–880; 10.1002/chem.201904178 CASPubMedWeb of Science®Google Scholar 9nE. Von Grotthuss, S. E. Prey, M. Bolte, H. W. Lerner, M. Wagner, J. Am. Chem. Soc. 2019, 141, 6082–6091; 10.1021/jacs.9b01998 CASPubMedWeb of Science®Google Scholar 9oL. J. Hounjet, C. Bannwarth, C. N. Garon, C. B. Caputo, S. Grimme, D. W. Stephan, Angew. Chem. Int. Ed. 2013, 125, 7640–7643. 10.1002/ange.201303166 Google Scholar 10 10aP. C. A. Swamy, S. Mukherjee, P. Thilagar, Chem. Commun. 2013, 49, 993–995; 10.1039/C2CC38352G CASPubMedWeb of Science®Google Scholar 10bP. C. A. Swamy, S. Mukherjee, P. Thilagar, Anal. Chem. 2014, 86, 3616–3624; 10.1021/ac500230p CASPubMedWeb of Science®Google Scholar 10cP. C. A. Swamy, S. Mukherjee, P. Thilagar, Inorg. Chem. 2014, 53, 4813–4823; 10.1021/ic402470a CASPubMedWeb of Science®Google Scholar 10dP. C. A. Swamy, P. Thilagar, Inorg. Chem. 2014, 53, 2776–2786; 10.1021/ic402470a CASPubMedWeb of Science®Google Scholar 10eP. C. A. Swamy, R. N. Priyanka, S. Mukherjee, P. hilagar, Eur. J. Inorg. Chem. 2015, 2015, 2338–2344; 10.1002/ejic.201500089 Google Scholar 10fP. C. A. Swamy, R. N. Priyanka, P. Thilagar, Dalton Trans. 2014, 43, 4067–4075; 10.1039/c3dt52565a CASPubMedWeb of Science®Google Scholar 10gP. C. A. Swamy, P. Thilagar, Dalton Trans. 2016, 45, 4688–4696. 10.1039/C5DT02678D PubMedWeb of Science®Google Scholar 11 11aS. Y. Li, Z. B. Sun, C. H. Zhao, Inorg. Chem. 2017, 56, 8705–8717; 10.1021/acs.inorgchem.6b02847 CASPubMedWeb of Science®Google Scholar 11bZ. B. Sun, S. Y. Li, Z. Q. Liu, C. H. Zhao, Chin. Chem. Lett. 2016, 27, 1131–1138; 10.1016/j.cclet.2016.06.007 CASWeb of Science®Google Scholar 11cZ. M. Hudson, S. Wang, Acc. Chem. Res. 2009, 42, 1584–1596; 10.1021/ar900072u CASPubMedWeb of Science®Google Scholar 11dX. Yin, K. Liu, Y. Ren, R. A. Lalancette, Y. L. Loo, F. Jäkle, Chem. Sci. 2017, 8, 5497–5505; 10.1039/C6SC03097A CASPubMedWeb of Science®Google Scholar 11eZ. M. Hudson, S. Wang, Dalton Trans. 2011, 40, 7805–7816; 10.1039/c1dt10292c CASPubMedWeb of Science®Google Scholar 11fR. Koch, Y. Sun, A. Orthaber, A. J. Pierik, F. Pammer, Org. Chem. Front. 2020, 7, 1437–1452. 10.1039/D0QO00267D CASWeb of Science®Google Scholar 12 12aT. Noda, H. Ogawa, Y. Shirota, Adv. Mater. 1999, 11, 283–285; 10.1002/(SICI)1521-4095(199903)11:4<283::AID-ADMA283>3.0.CO;2-V CASWeb of Science®Google Scholar 12bY. Shirota, M. Kinoshita, T. Noda, K. Okumoto, T. Ohara, J. Am. Chem. Soc. 2000, 122, 11021–11022; 10.1021/ja0023332 CASWeb of Science®Google Scholar 12cH. Doi, M. Kinoshita, K. Okumoto, Y. Shirota, Chem. Mater. 2003, 15, 1080–1089; 10.1021/cm020948n CASWeb of Science®Google Scholar 12dD. Mutaguchi, K. Okumoto, Y. Ohsedo, K. Moriwaki, Y. Shirota, Org. Electron. 2003, 4, 49–59. 10.1016/j.orgel.2003.08.001 CASWeb of Science®Google Scholar 13 13aS. M. Berger, T. B. Marder, Mater. Horiz. 2022, 9, 112–120; 10.1039/D1MH00696G CASPubMedWeb of Science®Google Scholar 13bS. Griesbeck, E. Michail, F. Rauch, H. Ogasawara, C. Wang, Y. Sato, R. M. Edkins, Z. Zhang, M. Taki, C. Lambert, S. Yamaguchi, Chem. Eur. J. 2019, 25, 13164–13175; 10.1002/chem.201902461 CASPubMedWeb of Science®Google Scholar 13cM. Ito, E. Ito, M. Hirai, S. Yamaguchi, J. Org. Chem. 2018, 83, 8449–8456; 10.1021/acs.joc.8b01015 CASPubMedWeb of Science®Google Scholar 13dP. C. A. Swamy, A. V. Raveendran, N. Sivakrishna, R. P. Nandi, Dalton Trans. 2022, 51, 15339–15353; 10.1039/D2DT01887J PubMedWeb of Science®Google Scholar 13eH. Li, F. Jäkle, Macromol. Rapid Commun. 2010, 31, 915–920. 10.1002/marc.200900932 CASPubMedWeb of Science®Google Scholar 14 14aA. Iwan, D. Sek, Prog. Polym. Sci. 2011, 36, 1277–1325; 10.1016/j.progpolymsci.2011.05.001 CASWeb of Science®Google Scholar 14bH. J. Yen, G. S. Liou, Prog. Polym. Sci. 2019, 89, 250–287; 10.1016/j.progpolymsci.2018.12.001 CASWeb of Science®Google Scholar 14cA. K. Mahapatra, A. Karak, S. K. Manna, Anal. Methods 2022, 14, 972–1005; 10.1039/D2AY00134A PubMedWeb of Science®Google Scholar 14dA. Farokhi, H. Shahroosvand, G. Delle Monache, M. Pilkington, M. K. Nazeeruddin, Chem. Soc. Rev. 2022, 51, 5974–6064; 10.1039/D1CS01157J CASPubMedWeb of Science®Google Scholar 14eL. Chang, Y. Hou, J. Bai, H. Xu, Y. Zhang, S. Miao, C. Wang, Mater. Chem. Phys. 2022, 275, 125196; 10.1016/j.matchemphys.2021.125196 CASGoogle Scholar 14fR. M. Saputra, C. Yang, D. Zhao, X. Zheng, Y. Li, Comput. Theor. Chem. 2022, 1207, 113467; 10.1016/j.comptc.2021.113467 CASGoogle Scholar 14gM. Liu, J. Cao, C. Huang, M. Zhang, Y. Li, C. Wang, Analyst 2022, 147, 3504–3513. 10.1039/D2AN00254J CASPubMedWeb of Science®Google Scholar 15 15aM. Baruah, W. Qin, N. Basarić, W. M. De Borggraeve, N. Boens, J. Org. Chem. 2005, 70, 4152–4157; 10.1021/jo0503714 CASPubMedWeb of Science®Google Scholar 15bN. Boens, V. Leen, W. Dehaen, Chem. Soc. Rev. 2012, 41, 1130–1172; 10.1039/C1CS15132K CASPubMedWeb of Science®Google Scholar 15cK. M. Sun, C. K. McLaughlin, D. R. Lantero, R. A. Manderville, J. Am. Chem. Soc. 2007, 129, 1894–1895; 10.1021/ja068416l CASPubMedWeb of Science®Google Scholar 15dH. He, M. A. Mortellaro, S. T. Young, U. S. Patent 8,097,725, 2012; Google Scholar 15eD. Aigner, S. A. Freunberger, M. Wilkening, R. Saf, S. M. Borisov, I. Klimant, Anal. Chem. 2014, 86, 9293–9300; 10.1021/ac502513g CASPubMedWeb of Science®Google Scholar 15fQ. A. Best, R. S. Xu, M. E. McCarroll, L. C. Wang, D. J. Dyer, Org. Lett. 2010, 12, 3219–3221; 10.1021/ol1011967 CASPubMedWeb of Science®Google Scholar 15gL. Praveen, S. Saha, S. K. Jewrajka, A. Das, J. Mater. Chem. B 2013, 1, 1150–1155. 10.1039/c2tb00193d CASPubMedWeb of Science®Google Scholar 16 16aZ. M. Hudson, X. Y. Liu, S. Wang, Org. Lett. 2011, 13, 300–303; 10.1021/ol102749y CASPubMedWeb of Science®Google Scholar 16bZ. Yin, A. Y. Y. Tam, K. M. C. Wong, C. H. Tao, B. Li, C. T. Poon, L. Wu, V. W. W. Yam, Dalton Trans. 2012, 41, 11340–11350. 10.1039/c2dt30446e CASPubMedWeb of Science®Google Scholar Volume9, Issue14April 12, 2024e202305115 ReferencesRelatedInformation