Diffusion model-based inverse design for thermal transparency

扩散 反向 透明度(行为) 材料科学 统计物理学 热力学 计算机科学 物理 数学 几何学 计算机安全
作者
Bin Liu,Liujun Xu,Yixi Wang,Jiping Huang
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:135 (12) 被引量:8
标识
DOI:10.1063/5.0197999
摘要

Generative models in the field of artificial intelligence and their applications and deployment have demonstrated their great strength in the past few years. Of the vast spectrum of generative models, diffusion probabilistic models have proven to be particularly powerful and productive, transforming notions such as text-to-image and text-to-video generation from ideas into practical applications. In our previous works, we proposed a thermal metamaterial-based periodic interparticle interaction mechanism for heat management, with a specific application in thermal transparency. To address the challenging problems associated with the inverse design of thermal metamaterial structures, we employed an autoencoder-based machine learning approach and a reinforcement learning-based approach successfully. In this work, we demonstrate that our particular problems with the inverse design of thermal metamaterial-based periodic lattices for the realization of thermal transparency can also be reframed and efficiently solved by training a generative diffusion probabilistic model that can generate the design parameters corresponding to the desired response. Furthermore, we show that for a specific response, multiple sets of design parameters can be obtained by simply performing multiple inferences with the generative diffusion probabilistic model, enabling us to select the ones that can be more economical to fabricate and implement. Our work is among the first to use a diffusion model for the inverse design of thermal metamaterial-based structures and demonstrates the effectiveness of generating low-dimensional design parameters through a diffusion model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
伏城发布了新的文献求助10
2秒前
something发布了新的文献求助10
3秒前
3秒前
王佳慧发布了新的文献求助10
3秒前
烟花应助潇洒怜梦采纳,获得10
3秒前
4秒前
何禾发布了新的文献求助10
5秒前
6秒前
科研通AI6应助三十三天采纳,获得10
6秒前
6秒前
潇潇发布了新的文献求助10
6秒前
6秒前
7秒前
赘婿应助ZQQ采纳,获得10
8秒前
baona发布了新的文献求助10
8秒前
壮观的惮完成签到,获得积分20
8秒前
9秒前
9秒前
YY发布了新的文献求助10
10秒前
研友_VZG7GZ应助hua123采纳,获得10
11秒前
Eliauk应助你好采纳,获得10
11秒前
爱吃火锅的胖墩度完成签到,获得积分10
12秒前
LMH发布了新的文献求助10
13秒前
DavidWebb发布了新的文献求助20
13秒前
13秒前
13秒前
jnshen发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
17秒前
DavidWebb完成签到,获得积分10
18秒前
丘比特应助王佳慧采纳,获得10
18秒前
19秒前
无名完成签到,获得积分10
20秒前
lizy发布了新的文献求助30
20秒前
20秒前
Docline完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532468
求助须知:如何正确求助?哪些是违规求助? 4621206
关于积分的说明 14577283
捐赠科研通 4561064
什么是DOI,文献DOI怎么找? 2499144
邀请新用户注册赠送积分活动 1479070
关于科研通互助平台的介绍 1450333