A Machine Learning Framework for Physics-Based Multi-Fidelity Modeling and Health Monitoring for a Composite Wing

忠诚 高保真 计算机科学 有限元法 人工神经网络 刚度 实验数据 机器学习 人工智能 模拟 工程类 结构工程 数学 电信 统计 电气工程
作者
Gaurav Makkar,Cameron Smith,George Drakoulas,Fotis Kopsaftopoulos,Farhan Gandhi
标识
DOI:10.1115/imece2022-94850
摘要

Abstract Computational mechanics is a useful tool in the structural health monitoring community for accurately predicting the mechanical performance of various components. However, high-fidelity models simulated through the finite element analysis (FEA) necessitate a large amount of computing power. This paper presents a new approach to develop a multi-fidelity model using artificial neural networks for health monitoring purposes. The proposed framework provides significant savings in computational time compared to a model trained only using high-fidelity data, while maintaining an acceptable level of accuracy. The analysis is conducted using two finite element models, of different fidelity, of an unmanned aerial vehicle (UAV) wing, with damage modeled at six locations, and varying severity. The damage is modeled by changing the stiffness properties of the materials at these locations. The algorithm developed aims at minimizing the number of high-fidelity data points for correcting the outputs of the low-fidelity model. It was observed that the low-fidelity model requires 8 high-fidelity data points to meet the desired error tolerance. This corrected low-fidelity model is then used for locating and quantifying the damage given the strains and frequency by expanding the previously trained network to output damage diagnosis results. The model with applied correction is able to locate the damage with an accuracy of ∼ 94% and quantify the damage with an accuracy of 93%. The performance of the corrected low-fidelity model is compared with a network trained only with high-fidelity datasets and it was observed that the corrected model requires 54% fewer data points as compared to the high-fidelity trained network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落落发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
weiwei完成签到,获得积分10
2秒前
左孤容完成签到 ,获得积分10
3秒前
淡淡的雪发布了新的文献求助10
3秒前
李健应助Crystal采纳,获得10
4秒前
与你共奋发布了新的文献求助10
4秒前
77关闭了77文献求助
5秒前
sadascaqwqw发布了新的文献求助10
5秒前
好困芽发布了新的文献求助10
7秒前
7秒前
123488发布了新的文献求助10
7秒前
迷路的枫发布了新的文献求助10
7秒前
Arlene发布了新的文献求助10
7秒前
张青军完成签到,获得积分20
8秒前
大福发布了新的文献求助30
11秒前
Leo发布了新的文献求助10
12秒前
科目三应助好困芽采纳,获得10
12秒前
15秒前
老黑发布了新的文献求助10
15秒前
weiwei关注了科研通微信公众号
15秒前
18秒前
Len完成签到,获得积分10
18秒前
尊敬吐司完成签到,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
墨墨完成签到,获得积分10
22秒前
23秒前
张张发布了新的文献求助30
23秒前
ghroth完成签到,获得积分10
23秒前
李健的小迷弟应助yun采纳,获得10
24秒前
老黑完成签到,获得积分10
25秒前
大福完成签到,获得积分10
25秒前
morningmaple发布了新的文献求助10
27秒前
歪歪发布了新的文献求助10
29秒前
orixero应助weiwei采纳,获得10
29秒前
31秒前
冷傲向松完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4313289
求助须知:如何正确求助?哪些是违规求助? 3833212
关于积分的说明 11992225
捐赠科研通 3473228
什么是DOI,文献DOI怎么找? 1904597
邀请新用户注册赠送积分活动 951433
科研通“疑难数据库(出版商)”最低求助积分说明 853024