Machine learning using multimodal clinical, electroencephalographic, and magnetic resonance imaging data can predict incident depression in adults with epilepsy: A pilot study

四分位间距 癫痫 萧条(经济学) 接收机工作特性 磁共振成像 特征选择 脑电图 医学 机器学习 人工智能 心理学 内科学 计算机科学 精神科 放射科 经济 宏观经济学
作者
Guillermo Delgado‐García,Jordan D. T. Engbers,Samuel Wiebe,Pauline Mouchès,Kimberly Amador,Nils D. Forkert,James A. White,Tolulope T. Sajobi,Karl Martin Klein,Colin B. Josephson
出处
期刊:Epilepsia [Wiley]
卷期号:64 (10): 2781-2791 被引量:3
标识
DOI:10.1111/epi.17710
摘要

This study was undertaken to develop a multimodal machine learning (ML) approach for predicting incident depression in adults with epilepsy.We randomly selected 200 patients from the Calgary Comprehensive Epilepsy Program registry and linked their registry-based clinical data to their first-available clinical electroencephalogram (EEG) and magnetic resonance imaging (MRI) study. We excluded patients with a clinical or Neurological Disorders Depression Inventory for Epilepsy (NDDI-E)-based diagnosis of major depression at baseline. The NDDI-E was used to detect incident depression over a median of 2.4 years of follow-up (interquartile range [IQR] = 1.5-3.3 years). A ReliefF algorithm was applied to clinical as well as quantitative EEG and MRI parameters for feature selection. Six ML algorithms were trained and tested using stratified threefold cross-validation. Multiple metrics were used to assess model performances.Of 200 patients, 150 had EEG and MRI data of sufficient quality for ML, of whom 59 were excluded due to prevalent depression. Therefore, 91 patients (41 women) were included, with a median age of 29 (IQR = 22-44) years. A total of 42 features were selected by ReliefF, none of which was a quantitative MRI or EEG variable. All models had a sensitivity > 80%, and five of six had an F1 score ≥ .72. A multilayer perceptron model had the highest F1 score (median = .74, IQR = .71-.78) and sensitivity (84.3%). Median area under the receiver operating characteristic curve and normalized Matthews correlation coefficient were .70 (IQR = .64-.78) and .57 (IQR = .50-.65), respectively.Multimodal ML using baseline features can predict incident depression in this population. Our pilot models demonstrated high accuracy for depression prediction. However, overall performance and calibration can be improved. This model has promise for identifying those at risk for incident depression during follow-up, although efforts to refine it in larger populations along with external validation are required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默完成签到 ,获得积分10
2秒前
奋斗小真完成签到 ,获得积分10
4秒前
北笙完成签到 ,获得积分0
5秒前
mei发布了新的文献求助10
6秒前
暴扣三米线完成签到 ,获得积分10
7秒前
bombing2048完成签到 ,获得积分10
14秒前
沉静香氛完成签到 ,获得积分10
14秒前
wanci应助mei采纳,获得10
16秒前
Zhangfu完成签到,获得积分10
22秒前
小密母完成签到 ,获得积分10
35秒前
luffy完成签到 ,获得积分10
38秒前
39秒前
半颗橙子完成签到 ,获得积分10
40秒前
wxy完成签到 ,获得积分10
43秒前
Joins_Su完成签到 ,获得积分10
43秒前
46秒前
zhaoxiaonuan发布了新的文献求助10
48秒前
LYJ完成签到,获得积分10
50秒前
大个应助暴扣三米线采纳,获得10
50秒前
iOhyeye23完成签到 ,获得积分10
51秒前
51秒前
yk完成签到 ,获得积分10
52秒前
dong完成签到 ,获得积分10
52秒前
ZXDDDD完成签到,获得积分10
53秒前
大灰狼完成签到 ,获得积分10
56秒前
科研通AI5应助zhaoxiaonuan采纳,获得30
1分钟前
达克赛德完成签到 ,获得积分10
1分钟前
zozox完成签到 ,获得积分10
1分钟前
sougardenist完成签到 ,获得积分10
1分钟前
杨雯娜完成签到,获得积分10
1分钟前
柯彦完成签到 ,获得积分10
1分钟前
雪落你看不见完成签到,获得积分10
1分钟前
甜甜青旋完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
陈秋完成签到,获得积分10
1分钟前
tigger完成签到,获得积分10
1分钟前
1分钟前
等待的幼晴完成签到,获得积分10
1分钟前
所爱皆在完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4472020
求助须知:如何正确求助?哪些是违规求助? 3931575
关于积分的说明 12196791
捐赠科研通 3586081
什么是DOI,文献DOI怎么找? 1971236
邀请新用户注册赠送积分活动 1009136
科研通“疑难数据库(出版商)”最低求助积分说明 902973