Machine learning using multimodal clinical, electroencephalographic, and magnetic resonance imaging data can predict incident depression in adults with epilepsy: A pilot study

四分位间距 癫痫 萧条(经济学) 接收机工作特性 磁共振成像 特征选择 脑电图 医学 机器学习 人工智能 心理学 内科学 计算机科学 精神科 放射科 经济 宏观经济学
作者
Guillermo Delgado‐García,Jordan D. T. Engbers,Samuel Wiebe,Pauline Mouchès,Kimberly Amador,Nils D. Forkert,James A. White,Tolulope T. Sajobi,Karl Martin Klein,Colin B. Josephson
出处
期刊:Epilepsia [Wiley]
卷期号:64 (10): 2781-2791 被引量:4
标识
DOI:10.1111/epi.17710
摘要

Abstract Objective This study was undertaken to develop a multimodal machine learning (ML) approach for predicting incident depression in adults with epilepsy. Methods We randomly selected 200 patients from the Calgary Comprehensive Epilepsy Program registry and linked their registry‐based clinical data to their first‐available clinical electroencephalogram (EEG) and magnetic resonance imaging (MRI) study. We excluded patients with a clinical or Neurological Disorders Depression Inventory for Epilepsy (NDDI‐E)‐based diagnosis of major depression at baseline. The NDDI‐E was used to detect incident depression over a median of 2.4 years of follow‐up (interquartile range [IQR] = 1.5–3.3 years). A ReliefF algorithm was applied to clinical as well as quantitative EEG and MRI parameters for feature selection. Six ML algorithms were trained and tested using stratified threefold cross‐validation. Multiple metrics were used to assess model performances. Results Of 200 patients, 150 had EEG and MRI data of sufficient quality for ML, of whom 59 were excluded due to prevalent depression. Therefore, 91 patients (41 women) were included, with a median age of 29 (IQR = 22–44) years. A total of 42 features were selected by ReliefF, none of which was a quantitative MRI or EEG variable. All models had a sensitivity > 80%, and five of six had an F1 score ≥ .72. A multilayer perceptron model had the highest F1 score (median = .74, IQR = .71–.78) and sensitivity (84.3%). Median area under the receiver operating characteristic curve and normalized Matthews correlation coefficient were .70 (IQR = .64–.78) and .57 (IQR = .50–.65), respectively. Significance Multimodal ML using baseline features can predict incident depression in this population. Our pilot models demonstrated high accuracy for depression prediction. However, overall performance and calibration can be improved. This model has promise for identifying those at risk for incident depression during follow‐up, although efforts to refine it in larger populations along with external validation are required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利的八宝粥完成签到 ,获得积分20
刚刚
刘婉敏完成签到 ,获得积分10
1秒前
1秒前
1秒前
Pebble1发布了新的文献求助10
2秒前
3秒前
4秒前
领导范儿应助xuerkk采纳,获得10
5秒前
JamesPei应助aaa采纳,获得10
6秒前
6秒前
6秒前
7秒前
慕青应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得30
7秒前
田様应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
温尔应助科研通管家采纳,获得10
7秒前
沉默襄发布了新的文献求助10
8秒前
9秒前
blUe发布了新的文献求助10
11秒前
zzf完成签到 ,获得积分10
11秒前
11秒前
12秒前
14秒前
1313发布了新的文献求助10
15秒前
15秒前
xs发布了新的文献求助10
16秒前
ohh发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507223
求助须知:如何正确求助?哪些是违规求助? 4602576
关于积分的说明 14482228
捐赠科研通 4536619
什么是DOI,文献DOI怎么找? 2486284
邀请新用户注册赠送积分活动 1468838
关于科研通互助平台的介绍 1441315