Joint Theoretical and Experimental Study of Stress Graphitization in Aligned Carbon Nanotube/Carbon Matrix Composites

材料科学 聚丙烯腈 碳纳米管 复合材料 复合数 碳化 碳纳米管金属基复合材料 压力(语言学) 基质(化学分析) 极限抗拉强度 应力松弛 纳米管 扫描电子显微镜 聚合物 蠕动 语言学 哲学
作者
Liwen Zhang,Małgorzata Kowalik,Qian Mao,Behzad Damirchi,Yongyi Zhang,Philip D. Bradford,Qingwen Li,Adri C. T. van Duin,Yuntian Zhu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (27): 32656-32666 被引量:6
标识
DOI:10.1021/acsami.3c03209
摘要

Stress graphitization is a unique phenomenon at the carbon nanotube (CNT)-matrix interfaces in CNT/carbon matrix (CNT/C) composites. A lack of fundamental atomistic understanding of its evolution mechanisms and a gap between the theoretical and experimental research have hindered the pursuit of utilizing this phenomenon for producing ultrahigh-performance CNT/C composites. Here, we performed reactive molecular dynamics simulations along with an experimental study to explore stress graphitization mechanisms of a CNT/polyacrylonitrile (PAN)-based carbon matrix composite. Different CNT contents in the composite were considered, while the nanotube alignment was controlled in one direction in the simulations. We observe that the system with a higher CNT content exhibits higher localized stress concentration in the periphery of CNTs, causing alignment of the nitrile groups in the PAN matrix along the CNTs, which subsequently results in preferential dehydrogenation and clustering of carbon rings and eventually graphitization of the PAN matrix when carbonized at 1500 K. These simulation results have been validated by experimentally produced CNT/PAN-based carbon matrix composite films, with transmission electron microscopy images showing the formation of additional graphitic layers converted by the PAN matrix around CNTs, where 82 and 144% improvements of the tensile strength and Young's modulus are achieved, respectively. The presented atomistic details of stress graphitization can provide guidance for further optimizing CNT-matrix interfaces in a more predictive and controllable way for the development of novel CNT/C composites with high performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
不想干活应助科研通管家采纳,获得10
刚刚
刚刚
1sunpf完成签到,获得积分10
1秒前
鑫鑫完成签到,获得积分10
1秒前
陌小千完成签到 ,获得积分10
1秒前
1秒前
spf完成签到,获得积分0
1秒前
luxkex完成签到,获得积分10
1秒前
闪闪秋寒完成签到 ,获得积分10
1秒前
陈嘉嘉完成签到,获得积分10
1秒前
天天快乐应助拉长的蓝采纳,获得10
1秒前
1秒前
a123发布了新的文献求助10
2秒前
不想看文献完成签到,获得积分10
2秒前
liu完成签到,获得积分10
2秒前
彭于晏应助LB采纳,获得10
2秒前
蓝荆发布了新的文献求助10
3秒前
Di喵喵完成签到,获得积分10
3秒前
禁止吃桃完成签到,获得积分10
3秒前
英俊的皮带完成签到,获得积分10
3秒前
明知欢喜完成签到,获得积分20
3秒前
4秒前
shin完成签到,获得积分10
4秒前
小树完成签到,获得积分20
5秒前
zzzzz完成签到,获得积分10
6秒前
6秒前
募股小完成签到,获得积分10
6秒前
6秒前
ZY完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
glowworm完成签到 ,获得积分10
8秒前
科研通AI6应助禁止吃桃采纳,获得10
8秒前
8秒前
闹心应助ssznbdrc采纳,获得10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4501138
求助须知:如何正确求助?哪些是违规求助? 3951175
关于积分的说明 12248879
捐赠科研通 3610204
什么是DOI,文献DOI怎么找? 1986134
邀请新用户注册赠送积分活动 1022565
科研通“疑难数据库(出版商)”最低求助积分说明 914928