亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Green, Quantized Federated Learning Over Wireless Networks: An Energy-Efficient Design

计算机科学 量化(信号处理) 能源消耗 高效能源利用 强化学习 传输(电信) 基站 人工神经网络 趋同(经济学) 无线 无线网络 数学优化 计算机工程 算法 人工智能 电信 数学 生物 生态学 电气工程 工程类 经济 经济增长
作者
Minsu Kim,Walid Saad,Mohammad Mozaffari,Mérouane Debbah
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 1386-1402 被引量:14
标识
DOI:10.1109/twc.2023.3289177
摘要

The practical deployment of federated learning (FL) over wireless networks requires balancing energy efficiency, convergence rate, and a target accuracy due to the limited available resources of devices. Prior art on FL often trains deep neural networks (DNNs) to achieve high accuracy and fast convergence using 32 bits of precision level. However, such scenarios will be impractical for resource-constrained devices since DNNs typically have high computational complexity and memory requirements. Thus, there is a need to reduce the precision level in DNNs to reduce the energy expenditure. In this paper, a green-quantized FL framework, which represents data with a finite precision level in both local training and uplink transmission, is proposed. Here, the finite precision level is captured through the use of quantized neural networks (QNNs) that quantize weights and activations in fixed-precision format. In the considered FL model, each device trains its QNN and transmits a quantized training result to the base station. Energy models for the local training and the transmission with quantization are rigorously derived. To minimize the energy consumption and the number of communication rounds simultaneously, a multi-objective optimization problem is formulated with respect to the number of local iterations, the number of selected devices, and the precision levels for both local training and transmission while ensuring convergence under a target accuracy constraint. To solve this problem, the convergence rate of the proposed FL system is analytically derived with respect to the system control variables. Then, the Pareto boundary of the problem is characterized to provide efficient solutions using the normal boundary inspection method. Design insights on balancing the tradeoff between the two objectives while achieving a target accuracy are drawn from using the Nash bargaining solution and analyzing the derived convergence rate. Simulation results show that the proposed FL framework can reduce energy consumption until convergence by up to 70% compared to a baseline FL algorithm that represents data with full precision without damaging the convergence rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raunio完成签到,获得积分10
1秒前
热带蚂蚁完成签到 ,获得积分10
8秒前
octopus完成签到,获得积分10
9秒前
碳酸芙兰完成签到,获得积分10
10秒前
打打应助jjj采纳,获得10
12秒前
fei完成签到 ,获得积分10
12秒前
21秒前
Artin发布了新的文献求助30
25秒前
jjj发布了新的文献求助10
25秒前
27秒前
桥豆麻袋完成签到 ,获得积分10
27秒前
31秒前
若雨凌风完成签到,获得积分10
33秒前
Lucas应助Vicki采纳,获得10
39秒前
44秒前
董H完成签到,获得积分10
45秒前
盐植物完成签到,获得积分10
49秒前
NexusExplorer应助MechaniKer采纳,获得10
55秒前
wanci应助56采纳,获得10
58秒前
3113129605完成签到 ,获得积分10
1分钟前
AQI完成签到,获得积分10
1分钟前
科研通AI5应助愤怒的无敌采纳,获得10
1分钟前
1分钟前
1分钟前
桃花落完成签到,获得积分10
1分钟前
清爽冰露完成签到,获得积分10
1分钟前
嘻嘻嘻发布了新的文献求助10
1分钟前
桃花落发布了新的文献求助10
1分钟前
坚强的纸飞机完成签到,获得积分10
1分钟前
1分钟前
1分钟前
可爱的函函应助桃花落采纳,获得10
1分钟前
1分钟前
ddrose发布了新的文献求助10
1分钟前
橙子完成签到,获得积分10
1分钟前
jinmuna完成签到,获得积分10
1分钟前
蓝苏完成签到,获得积分10
1分钟前
小伏完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346386
关于积分的说明 10329180
捐赠科研通 3062834
什么是DOI,文献DOI怎么找? 1681207
邀请新用户注册赠送积分活动 807462
科研通“疑难数据库(出版商)”最低求助积分说明 763702