Optimal control for a nonlinear stochastic PDE model of cancer growth

数学 非线性系统 应用数学 最优控制 数学优化 控制(管理) 数理经济学 控制理论(社会学) 计算机科学 量子力学 物理 人工智能
作者
Sakine Esmaili,M.R. Eslahchi,Delfim F. M. Torres
出处
期刊:Optimization [Taylor & Francis]
卷期号:: 1-45 被引量:1
标识
DOI:10.1080/02331934.2023.2232141
摘要

ABSTRACTABSTRACTWe study an optimal control problem for a stochastic model of tumour growth with drug application. This model consists of three stochastic hyperbolic equations describing the evolution of tumour cells. It also includes two stochastic parabolic equations describing the diffusions of nutrient and drug concentrations. Since all systems are subject to many uncertainties, we have added stochastic terms to the deterministic model to consider the random perturbations. Then, we have added control variables to the model according to the medical concepts to control the concentrations of drug and nutrient. In the optimal control problem, we have defined the stochastic and deterministic cost functions and we have proved the problems have unique optimal controls. For deriving the necessary conditions for optimal control variables, the stochastic adjoint equations are derived. We have proved the stochastic model of tumour growth and the stochastic adjoint equations have unique solutions. For proving the theoretical results, we have used a change of variable which changes the stochastic model and adjoint equations (a.s.) to deterministic equations. Then we have employed the techniques used for deterministic ones to prove the existence and uniqueness of optimal control.KEYWORDS: Stochastic optimal controlstochastic parabolic-hyperbolic equationEkeland variational principlemulticellular tumour spheroid modelfree boundary problemMATHEMATICS SUBJECT CLASSIFICATIONS 2010: 49J5549J2049J1549K4549K2049K15 AcknowledgementsThe authors are very grateful to the editor and the referees for their valuable comments and suggestions which improved the original submission of this paper.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementNo datasets were generated or analysed during the current study.Additional informationFundingTorres was supported by the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia) through CIDMA, reference UIDB/04106/2020.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
xixi完成签到,获得积分10
1秒前
固态发布了新的文献求助10
2秒前
纳纳椰完成签到,获得积分10
2秒前
柯飞扬发布了新的文献求助10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
核桃应助科研通管家采纳,获得10
3秒前
邓佳鑫Alan应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
核桃应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
核桃应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
不想干活应助Marlo采纳,获得20
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
星辰大海应助brd采纳,获得10
5秒前
满意的烨磊完成签到,获得积分10
6秒前
Dddd完成签到,获得积分20
6秒前
7秒前
lanmi完成签到,获得积分10
7秒前
Kilig发布了新的文献求助10
9秒前
不爱吃banana的猴子完成签到,获得积分10
9秒前
谢生婷发布了新的文献求助10
12秒前
accept发布了新的文献求助10
12秒前
隐形曼青应助eryelv采纳,获得10
13秒前
JiadePeng发布了新的文献求助30
13秒前
14秒前
张大旺完成签到,获得积分10
14秒前
14秒前
酷波er应助unicornmed采纳,获得10
15秒前
任性迎南发布了新的文献求助30
17秒前
乐乐应助777采纳,获得10
17秒前
MoNesy完成签到,获得积分10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4227369
求助须知:如何正确求助?哪些是违规求助? 3760846
关于积分的说明 11821657
捐赠科研通 3421736
什么是DOI,文献DOI怎么找? 1877920
邀请新用户注册赠送积分活动 931095
科研通“疑难数据库(出版商)”最低求助积分说明 838980