Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction

计算机科学 判别式 推论 机器学习 人工智能 过程(计算) 数据挖掘 核(代数) 一般化 领域(数学分析) 特征(语言学) 任务(项目管理) 领域知识 工程类 操作系统 系统工程 哲学 语言学 组合数学 数学 数学分析
作者
Jing Yang,Xiaomin Wang
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:244: 109928-109928 被引量:12
标识
DOI:10.1016/j.ress.2024.109928
摘要

Reliable prediction of the remaining useful life (RUL) is important for improving maintenance efficiency, equipment availability, and avoiding catastrophic accidents in complex industrial systems. Existing RUL prediction models have made some contribution, relying mainly on a large amount of degraded data with similar patterns or approximate distributions. However, in practical industrial systems, only a small amount of labeling data is usually available, which may also come from different devices and different working conditions, resulting in different distributions in the degraded data. This situation makes the existing RUL methods difficult to achieve satisfactory generalization performance. To address this challenge, this paper proposes a novel Meta-Learning with Deep Flow Kernel Network (MetaDFKN) model for RUL prediction under the few shot and cross-domain conditions. The model first learns kernel features in a data-driven manner and considers them as latent variables to improve the model's representative ability of shared knowledge between tasks. Then, we introduce the conditional normalized flow technique to infer richer posterior distributions in the kernel features, which helps to obtain feature information with stronger discriminative power. Moreover, shared knowledge and task-specific information are integrated into the contextual inference process, which can mine the dependencies of related tasks and capture richer domain information. Finally, to evaluate the proposed model, we conduct extensive experiments on engine and bearings degradation data, and the results verify the superiority of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助靓丽傲玉采纳,获得10
1秒前
丽娜完成签到,获得积分10
1秒前
moon完成签到,获得积分10
1秒前
帅气的马里奥完成签到 ,获得积分10
2秒前
搞怪柔完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
7秒前
7秒前
科研通AI5应助一点灵光采纳,获得20
7秒前
junxie完成签到,获得积分10
7秒前
星辰大海应助风笛采纳,获得10
9秒前
溟夔蝶魅发布了新的文献求助10
10秒前
共享精神应助卢明举采纳,获得30
10秒前
qyt发布了新的文献求助10
11秒前
lilili完成签到 ,获得积分10
11秒前
11秒前
12秒前
白许四十完成签到,获得积分10
12秒前
13秒前
13秒前
自觉静竹完成签到,获得积分10
15秒前
南城不南完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
靓丽傲玉发布了新的文献求助10
18秒前
思源应助自觉静竹采纳,获得10
19秒前
华仔应助花痴的绿真采纳,获得10
19秒前
知秋发布了新的文献求助10
20秒前
飞翔的土豆完成签到 ,获得积分10
20秒前
溟夔蝶魅完成签到,获得积分20
20秒前
嘻嘻发布了新的文献求助10
20秒前
21秒前
22秒前
风笛发布了新的文献求助10
22秒前
22秒前
filia160完成签到,获得积分10
22秒前
天天快乐应助qyt采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5190889
求助须知:如何正确求助?哪些是违规求助? 4374400
关于积分的说明 13621178
捐赠科研通 4228313
什么是DOI,文献DOI怎么找? 2319206
邀请新用户注册赠送积分活动 1317755
关于科研通互助平台的介绍 1267780