Spatial-Temporal Interval Aware Individual Future Trajectory Prediction

计算机科学 时间戳 区间(图论) 编码(内存) 弹道 循环神经网络 人工智能 人工神经网络 理论计算机科学 算法 实时计算 数学 物理 组合数学 天文
作者
Yiheng Jiang,Yongjian Yang,Yuanbo Xu,En Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (10): 5374-5387 被引量:20
标识
DOI:10.1109/tkde.2023.3332929
摘要

The past flourishing years of sequential location-based services began with the introduction of the Self-Attention Network (SAN), which quickly superseded CNN or RNN as the state-of-the-art backbone. Recent works utilize modified attention mechanisms or neural network layers to process spatial-temporal factors to realize fine-grained individual behavior pattern modeling. However, we argue these methods can be further improved due to the significant increase in the model's parameter scale or computational burden. In this paper, we first exploit two lightweight approaches, Rotary Time Aware Position Encoder (RoTAPE) and multi-head Interval Aware Attention Block (IAAB), to impel SAN by efficiently and effectively capturing spatial-temporal intervals among the user's visited locations, which require neither extra parameters nor a high computational cost. On the one hand, RoTAPE encodes the day- and hour-level timestamps into sequence representation simultaneously via a sinusoidal encoding matrix, and the corresponding time intervals can be explicitly captured by SAN. Specifically, the multi-level temporal differences are mutually independent to reflect the periodical pattern and jointly complete to measure the absolute time interval. On the other hand, IAAB, point- wise injecting the historical spatial-temporal intervals into the attention map, can promote SAN attaching importance to the spatial relations under the constraints of time conditions. Then, we design a novel MLP-based module, Spatial-Temporal Relation Memory (STR Memory), implemented with fully connected linear layers and matrix transpose operations. STR Memory, endowing the interactions inside historical intervals along different directions, can convert the historical intervals into spatial-temporal relations in future trajectories for accurate predictions. To this end, we propose an end-to-end mobility trajectory prediction framework, namely STiSAN $^+$ , employing RoTAPE, stacking multiple layers of IAAB-based encoder-decoder architecture, and coupling with STR Memory. We conducted numerous experiments on six public LBSN datasets to evaluate our proposed algorithm. From Next Location Recommendation to Multi-location Future Trajectory Prediction, our STiSAN $^+$ gains average 15.05% and 18.35% improvements against several state-of-the-art sequential models, respectively. Ablation studies demonstrate the effectiveness of RoTAPE, IAAB, and STR Memory under our framework. Moreover, we separately validate the extensibility and interpretability of RoTAPE and IAAB through non-sampled metric evaluation and visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
昔年若许完成签到,获得积分10
8秒前
天乌乌147完成签到,获得积分10
8秒前
JamesPei应助科研通管家采纳,获得10
9秒前
9秒前
qiao应助东华帝君采纳,获得10
9秒前
大模型应助阳光采纳,获得10
11秒前
11秒前
粉色娇嫩发布了新的文献求助10
12秒前
情怀应助乐观的镜子采纳,获得10
13秒前
nojivv完成签到,获得积分10
14秒前
guozizi发布了新的文献求助10
14秒前
小新完成签到 ,获得积分10
15秒前
冷风寒发布了新的文献求助10
16秒前
研友_尧尧和平Zza9Kn完成签到,获得积分20
17秒前
17秒前
赘婿应助荼蘼如雪采纳,获得10
18秒前
20秒前
22秒前
归尘发布了新的文献求助10
23秒前
26秒前
28秒前
29秒前
artgravia完成签到 ,获得积分10
29秒前
29秒前
荼蘼如雪发布了新的文献求助10
31秒前
sun发布了新的文献求助10
34秒前
34秒前
好嘟发布了新的文献求助10
35秒前
乐乐发布了新的文献求助10
35秒前
科研通AI5应助烟花采纳,获得10
36秒前
37秒前
江三村完成签到 ,获得积分10
38秒前
fagfagsf发布了新的文献求助10
42秒前
43秒前
44秒前
小王同志发布了新的文献求助10
46秒前
大个应助sun采纳,获得10
46秒前
47秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781926
求助须知:如何正确求助?哪些是违规求助? 3327450
关于积分的说明 10231409
捐赠科研通 3042382
什么是DOI,文献DOI怎么找? 1669975
邀请新用户注册赠送积分活动 799446
科研通“疑难数据库(出版商)”最低求助积分说明 758822