The Role of cfDNA Biomarkers and Patient Data in the Early Prediction of Preeclampsia: Artificial Intelligence Model

医学 子痫前期 产科 怀孕 遗传学 生物
作者
Asma Khalil,Giovanni Bellesia,Mary E. Norton,Bo Jacobsson,Sina Haeri,Melissa Egbert,Fergal D. Malone,Ronald J. Wapner,Ashley S. Roman,Revital Faro,Rajeevi Madankumar,Noel Strong,Robert M. Silver,Nidhi Vohra,Jon Hyett,Cora MacPherson,Brittany Prigmore,Ebad Ahmed,Zach Demko,J. Bryce Ortiz,Vivienne Souter,P. Dar
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier BV]
标识
DOI:10.1016/j.ajog.2024.02.299
摘要

Objective Accurate individualized assessment of preeclampsia risk enables the identification of patients most likely to benefit from initiation of low-dose aspirin at 12-16 weeks' gestation when there is evidence for its effectiveness, as well as guiding appropriate pregnancy care pathways and surveillance. The primary objective of this study was to evaluate the performance of artificial neural network models for the prediction of preterm preeclampsia (<37 weeks' gestation) using patient characteristics available at the first antenatal visit and data from prenatal cell-free DNA (cfDNA) screening. Secondary outcomes were prediction of early onset preeclampsia (<34 weeks' gestation) and term preeclampsia (≥37 weeks' gestation). Methods This secondary analysis of a prospective, multicenter, observational prenatal cfDNA screening study (SMART) included singleton pregnancies with known pregnancy outcomes. Thirteen patient characteristics that are routinely collected at the first prenatal visit and two characteristics of cfDNA, total cfDNA and fetal fraction (FF), were used to develop predictive models for early-onset (<34 weeks), preterm (<37 weeks), and term (≥37 weeks) preeclampsia. For the models, the 'reference' classifier was a shallow logistic regression (LR) model. We also explored several feedforward (non-linear) neural network (NN) architectures with one or more hidden layers and compared their performance with the LR model. We selected a simple NN model built with one hidden layer and made up of 15 units. Results Of 17,520 participants included in the final analysis, 72 (0.4%) developed early onset, 251 (1.4%) preterm, and 420 (2.4%) term preeclampsia. Median gestational age at cfDNA measurement was 12.6 weeks and 2,155 (12.3%) had their cfDNA measurement at 16 weeks' gestation or greater. Preeclampsia was associated with higher total cfDNA (median 362.3 versus 339.0 copies/ml cfDNA; p<0.001) and lower FF (median 7.5% versus 9.4%; p<0.001). The expected, cross-validated area under the curve (AUC) scores for early onset, preterm, and term preeclampsia were 0.782, 0.801, and 0.712, respectively for the LR model, and 0.797, 0.800, and 0.713, respectively for the NN model. At a screen-positive rate of 15%, sensitivity for preterm preeclampsia was 58.4% (95% CI 0.569, 0.599) for the LR model and 59.3% (95% CI 0.578, 0.608) for the NN model.The contribution of both total cfDNA and FF to the prediction of term and preterm preeclampsia was negligible. For early-onset preeclampsia, removal of the total cfDNA and FF features from the NN model was associated with a 6.9% decrease in sensitivity at a 15% screen positive rate, from 54.9% (95% CI 52.9-56.9) to 48.0% (95% CI 45.0-51.0). Conclusion Routinely available patient characteristics and cfDNA markers can be used to predict preeclampsia with performance comparable to other patient characteristic models for the prediction of preterm preeclampsia. Both LR and NN models showed similar performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王土豆完成签到 ,获得积分10
刚刚
刚刚
2秒前
dennisysz发布了新的文献求助10
3秒前
4秒前
4秒前
救驾来迟发布了新的文献求助10
7秒前
小周发布了新的文献求助10
7秒前
8秒前
helinchen完成签到,获得积分10
8秒前
科研通AI5应助等待戈多采纳,获得10
9秒前
帅气的猫发布了新的文献求助10
9秒前
在水一方应助一只小羊采纳,获得10
10秒前
12秒前
12秒前
13秒前
loewy完成签到,获得积分10
15秒前
在水一方发布了新的文献求助10
15秒前
FashionBoy应助香锅不要辣采纳,获得10
17秒前
19秒前
19秒前
在水一方应助TiamQHF采纳,获得10
19秒前
思源应助司徒不正采纳,获得10
20秒前
24秒前
玄轩发布了新的文献求助10
25秒前
27秒前
FashionBoy应助wangchangwu采纳,获得30
27秒前
ricetao发布了新的文献求助10
27秒前
大模型应助春风沂水采纳,获得10
27秒前
帅气的猫完成签到,获得积分10
28秒前
32秒前
浮游呦呦完成签到,获得积分10
32秒前
陶瓷小罐完成签到 ,获得积分10
33秒前
33秒前
玄轩完成签到,获得积分10
36秒前
qiao完成签到,获得积分10
36秒前
maodianandme完成签到,获得积分10
36秒前
黎幻枫发布了新的文献求助10
38秒前
dennisysz发布了新的文献求助10
38秒前
我是老大应助枯草采纳,获得10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211743
捐赠科研通 3038195
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133