Wasserstein Embedding Learning for Deep Clustering: A Generative Approach

计算机科学 聚类分析 人工智能 生成语法 嵌入 深度学习 生成模型 机器学习
作者
Jinyu Cai,Yunhe Zhang,Shiping Wang,Jicong Fan,Wenzhong Guo
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7567-7580 被引量:7
标识
DOI:10.1109/tmm.2024.3369862
摘要

Deep learning-based clustering methods, especially those incorporating deep generative models, have recently shown noticeable improvement on many multimedia benchmark datasets. However, existing generative models still suffer from unstable training, and the gradient vanishes, which results in the inability to learn desirable embedded features for clustering. In this paper, we aim to tackle this problem by exploring the capability of Wasserstein embedding in learning representative embedded features and introducing a new clustering module for jointly optimizing embedding learning and clustering. To this end, we propose Wasserstein embedding clustering (WEC), which integrates robust generative models with clustering. By directly minimizing the discrepancy between the prior and marginal distribution, we transform the optimization problem of Wasserstein distance from the original data space into embedding space, which differs from other generative approaches that optimize in the original data space. Consequently, it naturally allows us to construct a joint optimization framework with the designed clustering module in the embedding layer. Due to the substitutability of the penalty term in Wasserstein embedding, we further propose two types of deep clustering models by selecting different penalty terms. Comparative experiments conducted on nine publicly available multimedia datasets with several state-of-the-art methods demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
党文英给党文英的求助进行了留言
1秒前
调皮黑猫发布了新的文献求助30
1秒前
1秒前
accept完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
18幺八发布了新的文献求助10
3秒前
4秒前
勤奋映之完成签到 ,获得积分10
5秒前
5秒前
李爱国应助吴未采纳,获得10
6秒前
通~发布了新的文献求助10
7秒前
hsy发布了新的文献求助10
7秒前
8秒前
neiz发布了新的文献求助10
8秒前
天真的香寒完成签到 ,获得积分10
8秒前
瓶里岑发布了新的文献求助10
8秒前
菠萝发布了新的文献求助10
9秒前
9秒前
ZhouYW应助hsy采纳,获得10
10秒前
ZhouYW应助hsy采纳,获得10
10秒前
斯文败类应助hsy采纳,获得10
10秒前
酷波er应助masterwill采纳,获得10
10秒前
Jankin发布了新的文献求助10
11秒前
佳妮完成签到,获得积分10
11秒前
赘婿应助Teasteam采纳,获得10
11秒前
科研通AI5应助波波采纳,获得20
11秒前
小张发布了新的文献求助10
12秒前
12秒前
qingde发布了新的文献求助10
12秒前
研友_LNVeyL完成签到,获得积分10
13秒前
13秒前
曾经凡之发布了新的文献求助20
14秒前
杨洋发布了新的文献求助10
15秒前
蛋蛋完成签到,获得积分10
16秒前
无花果应助momi采纳,获得30
17秒前
慈祥的鸣凤完成签到 ,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791817
求助须知:如何正确求助?哪些是违规求助? 3336131
关于积分的说明 10279169
捐赠科研通 3052806
什么是DOI,文献DOI怎么找? 1675333
邀请新用户注册赠送积分活动 803378
科研通“疑难数据库(出版商)”最低求助积分说明 761208