Physics-informed deep learning for scattered full wavefield reconstruction from a sparse set of sensor data for impact diagnosis in structural health monitoring

压缩传感 结构健康监测 外推法 计算机科学 人工神经网络 算法 稳健性(进化) 人工智能 数学 工程类 数学分析 结构工程 生物化学 化学 基因
作者
Sakib Ashraf Zargar,Fuh‐Gwo Yuan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (5): 2963-2979 被引量:6
标识
DOI:10.1177/14759217231202547
摘要

This paper presents a physics-informed deep learning framework for the reconstruction of full scattered spatiotemporal Lamb wavefields (video images) in plate-like structures from a sparse set of time-series sensor data. The reconstructed scattered wavefield contains a wealth of information about the wave propagation phenomenon including any interactions of the propagating wave with damage in the structure. This information is paramount for damage diagnosis as is demonstrated in this paper via impact diagnosis—a key structural health monitoring application. A physics-informed neural network (PINN) that encodes the underlying elastodynamic field equations into the learning/training process in the neural network is proposed for this purpose. This prior wavefield physics knowledge embedded in the loss function acts as a regularization agent for the minimization problem in the neural network training, thereby enabling the extrapolation of a sparse set of one-dimensional time-series signals into two-dimensional scattered wavefield. The wavefield reconstruction capabilities of the proposed supervised forward PINN framework are first verified both numerically and experimentally for a stiffened aluminum panel under a couple of narrowband ultrasonic-frequency excitations, and the results confirm its robustness to low spatial resolution and substantial noise in the measured sensor data. The PINN requires far fewer sensors for scattered wavefield reconstruction, thereby permitting for a higher sensor spacing or lower spatial sampling. To this end, it is shown that a sensor spacing of 5λ generates good wavefield reconstruction accuracy, which is a 10-fold increase over the Nyquist–Shannon sampling limit (λ/2). Two sets of experiments are then conducted on a long-stiffened aluminum panel to validate the proposed framework via low-velocity impact diagnosis in the near-ultrasonic frequency range. The first set of experiments, with the known excitation force incorporated into the PINN, allows the wavefields to be accurately reconstructed with the sensor spacing up to 5λ as expected. The second set of experiments assumes unknown impact force history—a classical case of impact diagnosis where the impact force history is not known a priori. It is shown that the wavefield reconstruction through PINN still provides good accuracy albeit with a less generous sensor spacing of 2λ. A convolutional neural network long short-term memory (CNN-LSTM) model then solves the mathematically inverse problem of inferring the impact location and impact force history by analyzing the reconstructed impact generated wavefield. The impact location is predicted well with 93% accuracy, and the impact force history is reconstructed with 90% accuracy, further validating the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
wanci应助乐观画板采纳,获得10
4秒前
brick2024完成签到,获得积分10
11秒前
ocean完成签到,获得积分10
20秒前
既然寄了,那就开摆完成签到 ,获得积分10
24秒前
从容的水壶完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
27秒前
Hua完成签到,获得积分10
39秒前
liufan完成签到 ,获得积分10
45秒前
现实的曼安完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助10
50秒前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Lz555完成签到 ,获得积分10
1分钟前
代扁扁完成签到 ,获得积分10
1分钟前
Qvby3完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
北国雪未消完成签到 ,获得积分10
1分钟前
1分钟前
badgerwithfisher完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
无限的雨梅完成签到 ,获得积分10
1分钟前
广阔天地完成签到 ,获得积分10
1分钟前
Buduan完成签到,获得积分10
1分钟前
jeronimo完成签到,获得积分10
2分钟前
white完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
牛黄完成签到 ,获得积分10
2分钟前
2分钟前
高大绝义完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
cola完成签到 ,获得积分10
2分钟前
无语的断缘完成签到,获得积分10
2分钟前
无味完成签到,获得积分10
2分钟前
ysh完成签到,获得积分10
2分钟前
爱吃橙子的苹果水完成签到 ,获得积分10
2分钟前
lhn完成签到 ,获得积分10
2分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881640
求助须知:如何正确求助?哪些是违规求助? 3424001
关于积分的说明 10736978
捐赠科研通 3148903
什么是DOI,文献DOI怎么找? 1737697
邀请新用户注册赠送积分活动 838897
科研通“疑难数据库(出版商)”最低求助积分说明 784138