Abstract Stimulated radiation and gravitational waves (GWs) are two of the most important predictions made by Albert Einstein. In this work, we demonstrate that stimulated GW radiation can occur within gravitational atoms, which consist of Kerr black holes and the surrounding boson clouds formed through superradiance. The presence of GWs induces mixing between different states of the gravitational atoms, leading to resonant transitions between two states when the GW wavenumber closely matches the energy difference. Consequently, the energy and angular momentum released from these transitions lead to the amplification of GWs, resulting in an exponential increase in the transition rate. Remarkably, the transitions complete within a period much shorter than the lifetime of the cloud. These stimulated transitions give rise to a novel GW signal that is strong and directed, distinguished from the previously predicted continuous GWs originating from clouds of ultralight bosons.