已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SKGNet: Robotic Grasp Detection With Selective Kernel Convolution

抓住 人工智能 计算机科学 卷积(计算机科学) 核(代数) 计算机视觉 机器人 一般化 对象(语法) 比例(比率) 卷积神经网络 人工神经网络 数学 数学分析 物理 程序设计语言 组合数学 量子力学
作者
Sheng Yu,Di‐Hua Zhai,Yuanqing Xia
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (4): 2241-2252 被引量:13
标识
DOI:10.1109/tase.2022.3214196
摘要

Real-time and accuracy are important evaluation metrics of robotic grasp detection algorithms. To further improve the accuracy on the premise of ensuring real-time performance, in this paper, a new Selective Kernel convolution Grasp detection Network (SKGNet) is proposed. Compared with previous methods, the attention mechanism and multi-scale fusion features are integrated into the SKGNet, which makes the network not only pay full attention to the grasp area but also flexibly adjust the grasp area according to the scale of the object, thus effectively distinguishing the object from the background. The SKGNet is trained and tested on the Cornell dataset and the Jacquard dataset, with the accuracy of 99.1% and 95.9% respectively, which is superior to SOTA methods. Moreover, SKGNet's detection speed has reached 28fps. To demonstrate the performance of SKGNet, comparison studies and ablation experiments are performed in this paper. Finally, the grasp experiments of Baxter robot are also performed to verify the generalization of SKGNet in the actual scene, which achieves an average grasping success rate of 96.5%. Video is available at https://youtu.be/j07sb_ChzWQ . Note to Practitioners—Autonomous grasping is an very important skill for the robotic systems in the real world. However, due to the low grasp detection accuracy, robotic grasp is still a challenging problem. Although some methods have been developed to improve the grasp detection accuracy, the time efficiency is poor. Grasp detection with good accuracy and efficiency is worthy of further study. In this view, a novel deep learning-based grasp detection network SKGNet is proposed in this paper. It takes RGB-D images as input, trains and tests on public datasets, and finally outputs a series of grasp rectangles. Compared with the existing works, it not only achieves state-of-the-art detection accuracy, but also has high efficiency. To demonstrate the generalization performance and effectiveness, the SKGNet is also tested in the real world, and applied to perform the actual grasp task of Baxter robot. The results show that the SKGNet has good robustness and can detect the unknown objects of different sizes and shapes in the real world well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DE2022发布了新的文献求助10
3秒前
义气的元柏完成签到 ,获得积分10
3秒前
aiyoualxb发布了新的文献求助10
4秒前
7秒前
小姚姚完成签到,获得积分10
8秒前
VDC发布了新的文献求助10
10秒前
阜睿完成签到 ,获得积分10
11秒前
12秒前
烟花应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
19秒前
友好聪健完成签到 ,获得积分10
21秒前
快乐滑板发布了新的文献求助50
24秒前
TY发布了新的文献求助10
26秒前
希望天下0贩的0应助zzz采纳,获得10
26秒前
谢123完成签到 ,获得积分10
26秒前
火翟丰丰山心完成签到,获得积分10
31秒前
斐乐完成签到,获得积分10
38秒前
Wonder完成签到,获得积分10
39秒前
DE2022发布了新的文献求助30
41秒前
顾矜应助初七采纳,获得10
44秒前
VDC发布了新的文献求助10
44秒前
yeli完成签到,获得积分10
45秒前
小奋青完成签到 ,获得积分10
47秒前
47秒前
zzz完成签到,获得积分10
49秒前
聪孙发布了新的文献求助10
52秒前
53秒前
SQXT应助周健采纳,获得10
54秒前
安静的雨完成签到,获得积分10
56秒前
Chosen_1完成签到,获得积分10
59秒前
华仔应助无辜鞋子采纳,获得10
1分钟前
meow完成签到 ,获得积分10
1分钟前
姜忆霜完成签到 ,获得积分10
1分钟前
思源应助hzhang0807采纳,获得10
1分钟前
发发发完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Multimodal injustices: Speech acts, gender bias, and speaker’s status 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4105104
求助须知:如何正确求助?哪些是违规求助? 3642969
关于积分的说明 11542236
捐赠科研通 3350770
什么是DOI,文献DOI怎么找? 1840948
邀请新用户注册赠送积分活动 907839
科研通“疑难数据库(出版商)”最低求助积分说明 825002