Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction

计算机科学 图形 超图 卷积(计算机科学) 数据挖掘 算法 理论计算机科学 人工智能 数学 离散数学 人工神经网络
作者
Yanfeng Sun,Xiangheng Jiang,Yongli Hu,Fuqing Duan,Kan Guo,Boyue Wang,Junbin Gao,Baocai Yin
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 23680-23693 被引量:67
标识
DOI:10.1109/tits.2022.3208943
摘要

Recently, Graph Convolution Network (GCN) and Temporal Convolution Network (TCN) are introduced into traffic prediction and achieve state-of-the-art performance due to their good ability for modeling the spatial and temporal property of traffic data. In spite of having good performance, the current methods generally focus on the traffic measurement of road segments, i.e. the nodes of traffic flow graph, while the edges of the graph, which represent the correlation of traffic data of different road segments and form the affinity matrix for GCN, are usually constructed according to the structure of road network, but the spatial and temporal properties are not well exploited in their theories. In this paper, we propose a Dual Dynamic Spatial-Temporal Graph Convolution Network (DDSTGCN), which not only models the dynamic property of the nodes of the traffic flow graph but also captures the dynamic spatial-temporal feature of the edges by transforming the traffic flow graph into its dual hypergraph. The traffic prediction is enhanced by the collaborative convolutions on the traffic flow graph and its dual hypergraph. The proposed method is evaluated by extensive traffic prediction experiments on six real road datasets and the results show that it outperforms state-of-the-art related methods. Source codes are available at https://github.com/j1o2h3n/DDSTGCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DijiaXu应助萝卜采纳,获得10
1秒前
星辰大海应助ddffgz采纳,获得10
1秒前
LY发布了新的文献求助10
1秒前
FashionBoy应助逆时针采纳,获得10
1秒前
上官若男应助淘气科研采纳,获得10
1秒前
2秒前
AI_S发布了新的文献求助10
3秒前
天天快乐应助专注涵雁采纳,获得10
3秒前
ztt发布了新的文献求助10
3秒前
Muya发布了新的文献求助10
3秒前
NexusExplorer应助碧蓝的弱采纳,获得10
3秒前
Fine完成签到,获得积分10
3秒前
洺全发布了新的文献求助10
3秒前
情怀应助姜锦令采纳,获得10
4秒前
Jasper应助GSX采纳,获得10
5秒前
pp完成签到 ,获得积分10
5秒前
6秒前
李爱国应助小玉采纳,获得10
6秒前
我是站长才怪给冥冥之极为昭昭的求助进行了留言
6秒前
6秒前
热心书易完成签到,获得积分10
6秒前
完美怀蕾完成签到,获得积分10
7秒前
啦啦啦啦发布了新的文献求助10
7秒前
丹儿完成签到,获得积分10
8秒前
KerryDoe完成签到,获得积分10
9秒前
pluto应助哈哈哈哈采纳,获得10
9秒前
10秒前
丹儿发布了新的文献求助10
11秒前
Ccc发布了新的文献求助10
12秒前
shiizii应助lalaland采纳,获得10
12秒前
无私的芹应助fcc采纳,获得10
13秒前
从若完成签到,获得积分10
13秒前
搜集达人应助橘橙色采纳,获得10
13秒前
14秒前
三物完成签到 ,获得积分10
14秒前
火柴完成签到,获得积分10
14秒前
15秒前
Hui完成签到,获得积分10
16秒前
16秒前
鲲鹏戏龙完成签到,获得积分10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4025388
求助须知:如何正确求助?哪些是违规求助? 3565158
关于积分的说明 11348564
捐赠科研通 3296332
什么是DOI,文献DOI怎么找? 1815609
邀请新用户注册赠送积分活动 890172
科研通“疑难数据库(出版商)”最低求助积分说明 813320