Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction

计算机科学 图形 超图 卷积(计算机科学) 数据挖掘 算法 理论计算机科学 人工智能 数学 离散数学 人工神经网络
作者
Yanfeng Sun,Xiangheng Jiang,Yongli Hu,Fuqing Duan,Kan Guo,Boyue Wang,Junbin Gao,Baocai Yin
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 23680-23693 被引量:73
标识
DOI:10.1109/tits.2022.3208943
摘要

Recently, Graph Convolution Network (GCN) and Temporal Convolution Network (TCN) are introduced into traffic prediction and achieve state-of-the-art performance due to their good ability for modeling the spatial and temporal property of traffic data. In spite of having good performance, the current methods generally focus on the traffic measurement of road segments, i.e. the nodes of traffic flow graph, while the edges of the graph, which represent the correlation of traffic data of different road segments and form the affinity matrix for GCN, are usually constructed according to the structure of road network, but the spatial and temporal properties are not well exploited in their theories. In this paper, we propose a Dual Dynamic Spatial-Temporal Graph Convolution Network (DDSTGCN), which not only models the dynamic property of the nodes of the traffic flow graph but also captures the dynamic spatial-temporal feature of the edges by transforming the traffic flow graph into its dual hypergraph. The traffic prediction is enhanced by the collaborative convolutions on the traffic flow graph and its dual hypergraph. The proposed method is evaluated by extensive traffic prediction experiments on six real road datasets and the results show that it outperforms state-of-the-art related methods. Source codes are available at https://github.com/j1o2h3n/DDSTGCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyyyy发布了新的文献求助10
1秒前
小猴发布了新的文献求助10
2秒前
Sekiro发布了新的文献求助10
2秒前
悠悠完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
yang发布了新的文献求助10
3秒前
HT完成签到,获得积分10
4秒前
4秒前
ding应助英勇的幻露采纳,获得10
4秒前
4秒前
4秒前
小瓶子发布了新的文献求助20
4秒前
5秒前
今后应助吴灵采纳,获得10
5秒前
5秒前
6秒前
FashionBoy应助soul采纳,获得10
6秒前
Sekiro完成签到,获得积分10
6秒前
zrj完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
史小霜发布了新的文献求助10
8秒前
Infinity完成签到,获得积分10
8秒前
小猴完成签到,获得积分20
8秒前
李爱国应助zmx1025采纳,获得10
8秒前
共享精神应助王雨晴采纳,获得10
9秒前
9秒前
9秒前
田様应助kayn_采纳,获得20
9秒前
qww发布了新的文献求助10
9秒前
10秒前
莲枳榴莲完成签到,获得积分10
10秒前
daqing1725发布了新的文献求助10
10秒前
石头发布了新的文献求助10
11秒前
素笺生花完成签到,获得积分10
12秒前
12秒前
小毛线发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070701
求助须知:如何正确求助?哪些是违规求助? 4291806
关于积分的说明 13371837
捐赠科研通 4112158
什么是DOI,文献DOI怎么找? 2251879
邀请新用户注册赠送积分活动 1256949
关于科研通互助平台的介绍 1189638