Data-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing

过程(计算) 一般化 机械工程 特征(语言学) 机器学习 计算机科学 涂层 算法 人工智能 几何学 工程类 数学 材料科学 纳米技术 数学分析 操作系统 哲学 语言学
作者
Frederic E. Bock,Zina Kallien,N. Huber,Benjamin Klusemann
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:418: 116453-116453 被引量:11
标识
DOI:10.1016/j.cma.2023.116453
摘要

In the last decades, there has been an increase in the number of successful machine learning models that have served as a key to identifying and using linkages within the process-structure–property-performance chain for vastly different problems in the domains of materials mechanics. The consideration of physical laws in data-driven modelling has recently been shown to enable enhanced prediction performance and generalization while requiring less data than either physics-based or data-driven modelling approaches independently. In this contribution, we introduce a simulation-assisted machine learning framework applied to the solid-state layer deposition technique friction surfacing, suitable for solid-state additive manufacturing as well as repair or coating applications. The objective of the present study is to use machine learning algorithms to predict and analyse the influence of process parameters and environmental variables, i.e. substrate and backing material properties, on process behaviour and deposit geometry. The effects of maximum process temperatures supplied by a numerical heat transfer model on the predictions of the targets are given special attention. Numerous different machine learning algorithms are implemented, optimized and evaluated to take advantage of their varied capabilities and to choose the optimal one for each target and the provided data. Furthermore, the input feature dependence for each prediction target is evaluated using game-theory related Shapley Additive Explanation values. The experimental data set consists of two separate experimental design spaces, one for varying process parameters and the other for varying substrate and backing material properties, which allowed to keep the experimental effort to a minimum. The aim was to also represent the cross parameter space between the two independent spaces in the predictive model, which was accomplished and resulted in an approximately 44 % reduction in the number of experiments when compared to carrying out an experimental design that included both spaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助哈哈镜阿姐采纳,获得10
1秒前
1秒前
mario发布了新的文献求助10
2秒前
云水雾心发布了新的文献求助10
3秒前
西米关注了科研通微信公众号
4秒前
伶俐的颤发布了新的文献求助10
5秒前
8秒前
NEW发布了新的文献求助10
14秒前
17秒前
Hanoi347应助科研通管家采纳,获得10
19秒前
小不点应助科研通管家采纳,获得10
19秒前
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
Hanoi347应助科研通管家采纳,获得30
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
拼搏应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
小不点应助科研通管家采纳,获得10
19秒前
Josie应助科研通管家采纳,获得10
19秒前
拼搏应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
20秒前
我是老大应助科研通管家采纳,获得10
20秒前
20秒前
lwg发布了新的文献求助10
22秒前
大方的白开水完成签到,获得积分10
23秒前
24秒前
wangdong完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557972
求助须知:如何正确求助?哪些是违规求助? 4642937
关于积分的说明 14669867
捐赠科研通 4584431
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1489002
关于科研通互助平台的介绍 1459619