亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SFTNet: A microexpression-based method for depression detection

计算机科学 萧条(经济学) 人工智能 宏观经济学 经济
作者
LI Xing-yun,Xinyu Yi,Jiayu Ye,Yunshao Zheng,Qingxiang Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:243: 107923-107923 被引量:6
标识
DOI:10.1016/j.cmpb.2023.107923
摘要

Depression is a typical mental illness, and early screening can effectively prevent exacerbation of the condition. Many studies have found that the expressions of depressed patients are different from those of other subjects, and microexpressions have been used in the clinical detection of mental illness. However, there are few methods for the automatic detection of depression based on microexpressions. A new dataset of 156 participants (76 in the case group and 80 in the control group) was created. All data were collected in the context of a new emotional stimulation experiment and doctor-patient conversation. We first analyzed the Average Number of Occurrences (ANO) and Average Duration (AD) of facial expressions in the case group and the control group. Then, we proposed a two-stream model SFTNet for identifying depression based on microexpressions, which consists of a single-temporal network (STNet) and a full-temporal network (FTNet). STNet is used to extract features from facial images at a single time node, FTNet is used to extract features from all-time nodes, and the decision network combines the two features to identify depression through decision fusion. The code for SFTNet is available at https://github.com/muzixingyun/SFTNet. We found that the AD of all subjects was less than 20 frames (2/3 seconds) and that the facial expressions of the control group were richer. SFTNet achieved excellent results on the emotional stimulus experimental dataset, with Accuracy, Precision and Recall of 0.873, 0.888 and 0.846, respectively. We also conducted experiments on the doctor-patient conversation dataset, and the Accuracy, Precision and Recall were 0.829, 0.817 and 0.837, respectively. SFTNet can also be applied to microexpression detection task with more accuracy than SOTA models. In the emotional stimulation experiment, the subjects in the case group are more likely to show negative emotions. Compared to SOTA models, our depression detection method is more accurate and can assist doctors in the diagnosis of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
ding应助左肩微笑采纳,获得10
1秒前
ChencanFang完成签到,获得积分10
8秒前
若雨凌风应助Abner采纳,获得20
9秒前
SciGPT应助小蒋快去写文章采纳,获得10
14秒前
zzzzzz发布了新的文献求助10
16秒前
19秒前
28秒前
ksrcc发布了新的文献求助10
33秒前
36秒前
李剑鸿发布了新的文献求助30
42秒前
Ava应助拼搏流沙采纳,获得10
44秒前
YY完成签到,获得积分20
45秒前
无花果应助未雨绸缪采纳,获得10
48秒前
51秒前
深情安青应助寄草采纳,获得10
52秒前
FLY完成签到,获得积分10
53秒前
拼搏流沙发布了新的文献求助10
56秒前
柚木完成签到,获得积分10
57秒前
夏冰应助李剑鸿采纳,获得10
1分钟前
Akim应助柚木采纳,获得10
1分钟前
石刘气泡shui完成签到 ,获得积分10
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
大碗完成签到 ,获得积分10
1分钟前
章鱼完成签到,获得积分10
1分钟前
科研通AI2S应助开心泥猴桃采纳,获得10
1分钟前
无私萧完成签到,获得积分20
1分钟前
Leffzeng完成签到,获得积分10
1分钟前
李剑鸿完成签到,获得积分10
1分钟前
科研通AI5应助Leffzeng采纳,获得10
1分钟前
EasonYao发布了新的文献求助10
1分钟前
zho应助李剑鸿采纳,获得10
1分钟前
未雨绸缪发布了新的文献求助10
1分钟前
赘婿应助www采纳,获得10
1分钟前
寒冷麦片发布了新的文献求助10
1分钟前
1分钟前
周绿真完成签到,获得积分10
1分钟前
周绿真发布了新的文献求助10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336688
关于积分的说明 10281848
捐赠科研通 3053424
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803581
科研通“疑难数据库(出版商)”最低求助积分说明 761468