Annotating metabolite mass spectra with domain-inspired chemical formula transformers

代谢组学 代谢物 计算机科学 串联质谱法 计算生物学 质谱 下部结构 生物系统 化学 人工智能 模式识别(心理学) 质谱法 生物信息学 生物 生物化学 色谱法 结构工程 工程类
作者
Samuel Goldman,Jeremy Wohlwend,Martin Stražar,Guy Haroush,Ramnik J. Xavier,Connor W. Coley
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (9): 965-979 被引量:24
标识
DOI:10.1038/s42256-023-00708-3
摘要

Metabolomics studies have identified small molecules that mediate cell signaling, competition and disease pathology, in part due to large-scale community efforts to measure tandem mass spectra for thousands of metabolite standards. Nevertheless, the majority of spectra observed in clinical samples cannot be unambiguously matched to known structures. Deep learning approaches to small-molecule structure elucidation have surprisingly failed to rival classical statistical methods, which we hypothesize is due to the lack of in-domain knowledge incorporated into current neural network architectures. Here we introduce a neural network-driven workflow for untargeted metabolomics, Metabolite Inference with Spectrum Transformers (MIST), to annotate tandem mass spectra peaks with chemical structures. Unlike existing approaches, MIST incorporates domain insights into its architecture by encoding peaks with their chemical formula representations, implicitly featurizing pairwise neutral losses and training the network to additionally predict substructure fragments. MIST performs favorably compared with both standard neural architectures and the state-of-the-art kernel method on the task of fingerprint prediction for over 70% of metabolite standards and retrieves 66% of metabolites with equal or improved accuracy, with 29% strictly better. We further demonstrate the utility of MIST by suggesting potential dipeptide and alkaloid structures for differentially abundant spectra found in an inflammatory bowel disease patient cohort. Tandem mass spectroscopy is a useful tool to identify metabolites but is limited by the capability of computational methods to annotate peaks with chemical structures when spectra are dissimilar to previously observed spectra. Goldman and colleagues use a transformer-based method to annotate chemical structure fragments, thereby incorporating domain insights into its architecture, and to simultaneously predict the structure of the metabolite and its fragments from the spectrum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalalalala完成签到,获得积分10
1秒前
1秒前
细腻慕儿完成签到 ,获得积分10
2秒前
郭禹霄发布了新的文献求助10
2秒前
草莓大果汁完成签到 ,获得积分10
3秒前
有一套发布了新的文献求助10
3秒前
吉吉完成签到,获得积分10
4秒前
zz发布了新的文献求助50
5秒前
卧镁铀钳完成签到 ,获得积分10
5秒前
6秒前
剪影改发布了新的文献求助10
6秒前
科研通AI5应助有一套采纳,获得10
11秒前
11秒前
12秒前
传奇3应助科研通管家采纳,获得10
13秒前
iNk应助科研通管家采纳,获得20
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
吉吉发布了新的文献求助10
13秒前
FashionBoy应助成就小懒虫采纳,获得10
13秒前
15秒前
科研通AI5应助钟钟采纳,获得20
17秒前
shl发布了新的文献求助10
17秒前
vv发布了新的文献求助10
18秒前
19秒前
踏实的傲白完成签到,获得积分10
20秒前
dongbei发布了新的文献求助30
22秒前
23秒前
eee7完成签到,获得积分10
25秒前
25秒前
27秒前
haha完成签到,获得积分20
28秒前
29秒前
ograss完成签到,获得积分10
29秒前
逆时针完成签到,获得积分10
33秒前
Lq完成签到 ,获得积分10
33秒前
大肘子发布了新的文献求助10
33秒前
Akui完成签到 ,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782367
求助须知:如何正确求助?哪些是违规求助? 3327852
关于积分的说明 10233399
捐赠科研通 3042794
什么是DOI,文献DOI怎么找? 1670183
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758883