Enhanced variants of crow search algorithm boosted with cooperative based island model for global optimization

早熟收敛 水准点(测量) 计算机科学 局部最优 局部搜索(优化) 人口 趋同(经济学) 锦标赛选拔 数学优化 群体行为 启发式 元启发式 选择(遗传算法) 人工智能 机器学习 粒子群优化 数学 人口学 大地测量学 社会学 经济增长 经济 地理
作者
Thaer Thaher,Alaa Sheta,Mohammed Awad,Mohammed Aldasht
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121712-121712 被引量:2
标识
DOI:10.1016/j.eswa.2023.121712
摘要

The Crow Search Algorithm (CSA) is a swarm-based metaheuristic algorithm that simulates the intelligent foraging behaviors of crows. While CSA effectively handles global optimization problems, it suffers from certain limitations, such as low search accuracy and a tendency to converge to local optima. To address these shortcomings, researchers have proposed modifications and enhancements to CSA's search mechanism. One widely explored approach is the structured population mechanism, which maintains diversity during the search process to mitigate premature convergence. The island model, a common structured population method, divides the population into smaller independent sub-populations called islands, each running in parallel. Migration, the primary technique for promoting population diversity, facilitates the exchange of relevant and useful information between islands during iterations. This paper introduces an enhanced variant of CSA, called Enhanced CSA (ECSA), which incorporates the cooperative island model (iECSA) to improve its search capabilities and avoid premature convergence. The proposed iECSA incorporates two enhancements to CSA. Firstly, an adaptive tournament-based selection mechanism is employed to choose the guided solution. Secondly, the basic random movement in CSA is replaced with a modified operator to enhance exploration. The performance of iECSA is evaluated on 53 real-valued mathematical problems, including 23 classical benchmark functions and 30 IEEE-CEC2014 benchmark functions. A sensitivity analysis of key iECSA parameters is conducted to understand their impact on convergence and diversity. The efficacy of iECSA is validated by conducting an extensive evaluation against a comprehensive set of well-established and recently introduced meta-heuristic algorithms, encompassing a total of seventeen different algorithms. Significant differences among these comparative algorithms are established utilizing statistical tests like Wilcoxon's rank-sum and Friedman's tests. Experimental results demonstrate that iECSA outperforms the fundamental ECSA algorithm on 82.6% of standard test functions, providing more accurate and reliable outcomes compared to other CSA variants. Furthermore, Extensive experimentation consistently showcases that the iECSA outperforms its comparable algorithms across a diverse set of benchmark functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
川农辅导员完成签到,获得积分10
1秒前
李秋静完成签到,获得积分10
6秒前
Caryo发布了新的文献求助10
6秒前
8秒前
写个锤子完成签到,获得积分10
11秒前
czyzyzy发布了新的文献求助10
11秒前
12秒前
冷静秀发布了新的文献求助10
15秒前
15秒前
wys完成签到 ,获得积分10
16秒前
Lucas应助何lalala采纳,获得30
17秒前
积极松鼠完成签到,获得积分10
19秒前
19秒前
wanci应助淡然的夜柳采纳,获得10
20秒前
六月歌者发布了新的文献求助10
21秒前
沉静乾完成签到,获得积分10
22秒前
大模型应助想吃麻辣烫采纳,获得10
22秒前
22秒前
22秒前
杨凤琳完成签到 ,获得积分10
23秒前
renpp822完成签到,获得积分10
23秒前
马拉疯兔子完成签到 ,获得积分10
24秒前
HEIKU应助悲虹采纳,获得10
25秒前
25秒前
26秒前
有机发布了新的文献求助10
26秒前
26秒前
哈哈哈哈哈哈完成签到,获得积分10
27秒前
28秒前
ssff发布了新的文献求助30
28秒前
阔达东蒽完成签到,获得积分10
29秒前
何lalala发布了新的文献求助30
30秒前
我是老大应助李小伟采纳,获得10
30秒前
super完成签到,获得积分10
31秒前
抚琴女发布了新的文献求助10
32秒前
32秒前
32秒前
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793321
求助须知:如何正确求助?哪些是违规求助? 3338017
关于积分的说明 10288476
捐赠科研通 3054654
什么是DOI,文献DOI怎么找? 1676108
邀请新用户注册赠送积分活动 804109
科研通“疑难数据库(出版商)”最低求助积分说明 761757