已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Flex-Route Transit for Smart Cities: A Reinforcement Learning Approach to Balance Ridership and Performance

作者
Joseph Rodriguez,Haris N. Koutsopoulos,Jinhua Zhao
出处
期刊:Smart cities [MDPI AG]
卷期号:8 (5): 150-150
标识
DOI:10.3390/smartcities8050150
摘要

A major challenge for modern transit systems relying on traditional fixed-route designs is providing broad accessibility to users. Flex-route transit can enhance accessibility in low-density areas, since it combines the directness of fixed-route transit with the coverage of on-demand mobility. Although deviating for optional pickups can increase ridership and transit accessibility, it also deteriorates the service performance for fixed-route riders. To balance this inherent trade-off, this paper proposes a reinforcement learning approach for deviation decisions. The proposed model is used in a case study of a proposed flex-route service in the city of Boston. The performance on competing objectives is evaluated for reward configurations that adapt to peak and off-peak scenarios. The analysis shows a significant improvement of our method compared to a heuristic derived from industry practice as a baseline. To evaluate robustness, we assess performance across scenarios with varying demand compositions (fixed and requested riders). The results show that the method achieves greater improvements than the baseline in scenarios with increased request ridership, i.e., where decision-making is more complex. Our approach improves service performance under dynamic demand conditions and varying priorities, offering a valuable tool for smart cities to operate flex-route services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
科研通AI6应助Lee采纳,获得10
2秒前
3秒前
nightmare发布了新的文献求助10
3秒前
5秒前
5秒前
科研通AI2S应助lin采纳,获得10
6秒前
SY15732023811完成签到 ,获得积分10
7秒前
桃七完成签到,获得积分10
8秒前
科研通AI6应助pililili采纳,获得10
8秒前
wwx发布了新的文献求助10
9秒前
10秒前
科研通AI6应助肖浩翔采纳,获得10
11秒前
风清扬发布了新的文献求助10
11秒前
12秒前
起风了完成签到 ,获得积分20
12秒前
木木完成签到,获得积分10
12秒前
yeonh发布了新的文献求助10
13秒前
13秒前
bkagyin应助alho采纳,获得10
13秒前
Daniel发布了新的文献求助30
14秒前
木木发布了新的文献求助10
16秒前
包容成败发布了新的文献求助10
18秒前
无花果应助wwx采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
无极微光应助科研通管家采纳,获得40
19秒前
浮游应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
hbhbj应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
无花果应助梁平采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
luckyseven完成签到,获得积分10
19秒前
19秒前
ding应助科研通管家采纳,获得30
19秒前
19秒前
20秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502143
求助须知:如何正确求助?哪些是违规求助? 4598182
关于积分的说明 14462771
捐赠科研通 4531746
什么是DOI,文献DOI怎么找? 2483529
邀请新用户注册赠送积分活动 1466913
关于科研通互助平台的介绍 1439514