Predicting Glaucoma Before Onset Using a Large Language Model Chatbot

高眼压 青光眼 聊天机器人 计算机科学 眼科 医学 验光服务 自然语言处理
作者
Xiaoqin Huang,Hina Raja,Yeganeh Madadi,Mohammad Delsoz,Asma Poursoroush,Malik Y. Kahook,Siamak Yousefi
出处
期刊:American Journal of Ophthalmology [Elsevier BV]
卷期号:266: 289-299 被引量:10
标识
DOI:10.1016/j.ajo.2024.05.022
摘要

Purpose To investigate the capability of ChatGPT for forecasting the conversion from ocular hypertension (OHT) to glaucoma based on the Ocular Hypertension Treatment Study (OHTS). Design Retrospective case-control study. Participants A total of 3008 eyes of 1504 subjects from the OHTS were included in the study. Methods We selected demographic, clinical, ocular, optic nerve head, and visual field (VF) parameters one year prior to glaucoma development from the OHTS participants. Subsequently, we developed queries by converting tabular parameters into textual format based on both eyes of all participants. We used the ChatGPT application program interface (API) to automatically perform ChatGPT prompting for all subjects. We then investigated whether ChatGPT can accurately forecast conversion from OHT to glaucoma based on various objective metrics. Main outcome measure Accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and weighted F1 score. Results ChatGPT4.0 demonstrated an accuracy of 75%, AUC of 0.67, sensitivity of 56%, specificity of 78%, and weighted F1 score of 0.77 in predicting conversion to glaucoma one year before onset. ChatGPT3.5 provided an accuracy of 61%, AUC of 0.62, sensitivity of 64%, specificity of 59%, and weighted F1 score of 0.63 in predicting conversion to glaucoma one year before onset. Conclusions The performance of ChatGPT4.0 in forecasting development of glaucoma one year before onset was reasonable. The overall performance of ChatGPT4.0 was consistently higher than ChatGPT3.5. Large language models (LLMs) hold great promise for augmenting glaucoma research capabilities and enhancing clinical care. Future efforts in creating ophthalmology specific LLMs that leverage multi-modal data in combination with active learning may lead to more useful integration with clinical practice and deserve further investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ct551144发布了新的文献求助10
2秒前
脑洞疼应助溫蒂采纳,获得10
2秒前
Alivelean发布了新的文献求助10
4秒前
5秒前
搞怪故事发布了新的文献求助10
7秒前
别让我误会完成签到 ,获得积分10
7秒前
ding应助霸气的梦露采纳,获得10
10秒前
南方周末发布了新的文献求助10
11秒前
Tohka完成签到 ,获得积分10
12秒前
Goblin完成签到 ,获得积分10
12秒前
13秒前
Qu_Yun发布了新的文献求助10
15秒前
www完成签到 ,获得积分10
15秒前
花生完成签到 ,获得积分10
16秒前
Cao完成签到 ,获得积分10
18秒前
酷炫的毛巾应助雪宝宝采纳,获得10
18秒前
19秒前
21秒前
MOMO完成签到,获得积分10
21秒前
李善聪发布了新的文献求助20
22秒前
李健的小迷弟应助Alivelean采纳,获得10
22秒前
22秒前
CHENXIN532完成签到,获得积分10
22秒前
强风吹拂完成签到,获得积分10
23秒前
小满胜万全完成签到,获得积分10
23秒前
max完成签到,获得积分10
24秒前
tigger完成签到 ,获得积分10
24秒前
24秒前
25秒前
CHENXIN532发布了新的文献求助10
26秒前
27秒前
xiao_J发布了新的文献求助30
29秒前
立稳flag关注了科研通微信公众号
31秒前
ykxa完成签到,获得积分20
32秒前
35秒前
35秒前
明天好完成签到,获得积分10
35秒前
烟花应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214551
捐赠科研通 3038674
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315