Time-Frequency Analysis and Recognition for UAVs Based on Acoustic Signals Collected by Low-frequency Acoustic-electric Sensor

声学 声传感器 时频分析 低频 计算机科学 物理 电信 雷达
作者
Liwen Liu,Bing Sun,Jingwen Li,R. Ma,Guirong Li,Lei Zhang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (12): 19601-19613 被引量:2
标识
DOI:10.1109/jsen.2024.3397163
摘要

The utilization of unmanned aerial vehicles (UAVs) is progressively expanding, thereby introducing novel risks to public safety and even the battlefield environment. Consequently, it becomes imperative to detect non-cooperative UAVs. The employment of UAV sound signals for identifying nearby UAVs has garnered significant attention due to its comprehensive coverage, independence from obstructions such as trees, and cost-effectiveness. However, practical implementation is hindered by the rapid attenuation of sound, limited acquisition range, and insufficient sound dataset. Therefore, urgent research is required on the generation and propagation of UAV sounds in order to enhance sensor performance and signal processing algorithms while enriching the available UAV sound dataset. This paper analyzes the time-frequency characteristics of UAV sound generation and propagation. On this basis,a low-frequency acoustic sensitive acoustic sensor based on piezoelectric ceramic double vibrator is adopted. The sensor has an amplification effect on the low-frequency high-energy signals emitted by UAV,and the detection distance reaches 500 m. Then,UAV sound datasets at different altitudes are collected,and a sparse Mayer filter is designed to generate the time-frequency feature map. In order to reduce the influence of environmental noise,vehicle noise,bird chirp,rain and other environmental sounds are collected as negative samples. The deep residual network is used to train and identify UAV sounds,and the accuracy of the test set reaches 99.7 percent. This system can accurately identify whether there is a UAV in the range of 500 m,which has important value in the field of security and other fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助美好斓采纳,获得10
3秒前
俭朴的大有完成签到,获得积分10
9秒前
qiyun96完成签到,获得积分10
11秒前
11秒前
14秒前
桐桐应助莓莓崽采纳,获得10
17秒前
乐乐应助WFLLL采纳,获得10
19秒前
river123发布了新的文献求助10
19秒前
小羊的科研日记完成签到,获得积分10
20秒前
20秒前
雷半双完成签到,获得积分10
22秒前
23秒前
杨耑耑完成签到 ,获得积分10
25秒前
姜程璐发布了新的文献求助10
25秒前
苏南完成签到 ,获得积分10
27秒前
WFLLL发布了新的文献求助10
27秒前
30秒前
30秒前
Hello应助若有光采纳,获得10
34秒前
Hello应助WFLLL采纳,获得10
34秒前
斯文败类应助wf0806采纳,获得10
34秒前
轻松小之发布了新的文献求助10
35秒前
e1完成签到,获得积分10
37秒前
home完成签到,获得积分10
38秒前
hansJAMA发布了新的文献求助10
40秒前
大模型应助天行马采纳,获得10
48秒前
VirgoW完成签到,获得积分10
50秒前
脆脆鲨鱼完成签到,获得积分10
52秒前
54秒前
Letter完成签到 ,获得积分10
56秒前
科目三应助TWT采纳,获得10
58秒前
远方发布了新的文献求助10
58秒前
1分钟前
闵卷完成签到,获得积分10
1分钟前
爱听歌的梦易完成签到 ,获得积分10
1分钟前
Mycee完成签到 ,获得积分10
1分钟前
高c发布了新的文献求助10
1分钟前
1分钟前
VirgoW发布了新的文献求助10
1分钟前
科研通AI5应助勤奋的汉堡采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211853
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133