Overcoming the adhesion paradox and switchability conflict on rough surfaces with shape-memory polymers

胶粘剂 材料科学 粘附 复合材料 弹性体 聚合物 形状记忆聚合物 表面粗糙度 天然橡胶 纳米技术 图层(电子)
作者
Changhong Linghu,Yangchengyi Liu,Yee Yuan Tan,Jun Heng Marcus Sing,Yuxuan Tang,Aiwu Zhou,Xiufeng Wang,Dong Li,Huajian Gao,K. Jimmy Hsia
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:120 (13) 被引量:3
标识
DOI:10.1073/pnas.2221049120
摘要

Smart adhesives that can be applied and removed on demand play an important role in modern life and manufacturing. However, current smart adhesives made of elastomers suffer from the long-standing challenges of the adhesion paradox (rapid decrease in adhesion strength on rough surfaces despite adhesive molecular interactions) and the switchability conflict (trade-off between adhesion strength and easy detachment). Here, we report the use of shape-memory polymers (SMPs) to overcome the adhesion paradox and switchability conflict on rough surfaces. Utilizing the rubbery–glassy phase transition in SMPs, we demonstrate, through mechanical testing and mechanics modeling, that the conformal contact in the rubbery state followed by the shape-locking effect in the glassy state results in the so-called rubber-to-glass (R2G) adhesion (defined as making contact in the rubbery state to a certain indentation depth followed by detachment in the glassy state), with extraordinary adhesion strength (>1 MPa) proportional to the true surface area of a rough surface, overcoming the classic adhesion paradox. Furthermore, upon transitioning back to the rubbery state, the SMP adhesives can detach easily due to the shape-memory effect, leading to a simultaneous improvement in adhesion switchability (up to 10 3 , defined as the ratio of the SMP R2G adhesion to its rubbery-state adhesion) as the surface roughness increases. The working principle and the mechanics model of R2G adhesion provide guidelines for developing stronger and more switchable adhesives adaptable to rough surfaces, thereby enhancing the capabilities of smart adhesives, and impacting various fields such as adhesive grippers and climbing robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研猫猫发布了新的文献求助10
3秒前
3秒前
lonely完成签到,获得积分10
4秒前
Jeffreyzhong发布了新的文献求助10
4秒前
7秒前
Moihan发布了新的文献求助10
7秒前
科研通AI5应助jiulin采纳,获得30
8秒前
8秒前
9秒前
轻松小张发布了新的文献求助10
13秒前
科研通AI2S应助sanyecai采纳,获得10
14秒前
大模型应助叶95采纳,获得10
14秒前
DYJ发布了新的文献求助10
15秒前
xiuxiu_27完成签到 ,获得积分10
19秒前
郭元强完成签到,获得积分10
19秒前
Nniu完成签到,获得积分10
22秒前
花痴的谷雪完成签到,获得积分10
22秒前
科研通AI5应助duck99采纳,获得30
23秒前
24秒前
大模型应助DYJ采纳,获得30
24秒前
27秒前
27秒前
细腻的歌曲完成签到,获得积分10
30秒前
31秒前
SDNUDRUG完成签到,获得积分10
33秒前
40秒前
完美星落完成签到,获得积分10
42秒前
顾矜应助可靠的映阳采纳,获得10
44秒前
科研通AI5应助我不是阿呆采纳,获得30
45秒前
jiulin发布了新的文献求助30
45秒前
46秒前
49秒前
50秒前
50秒前
奶糖喵完成签到 ,获得积分10
52秒前
Dr.Dream完成签到,获得积分10
52秒前
风中梦蕊发布了新的文献求助10
53秒前
夏禾发布了新的文献求助10
53秒前
54秒前
点酒成诗发布了新的文献求助10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777324
求助须知:如何正确求助?哪些是违规求助? 3322593
关于积分的说明 10210806
捐赠科研通 3037943
什么是DOI,文献DOI怎么找? 1666984
邀请新用户注册赠送积分活动 797900
科研通“疑难数据库(出版商)”最低求助积分说明 758072