Research progress in hydrofoil cavitation prediction and suppression methods

物理 空化 航空航天工程 机械 工程类
作者
Qianfeng Qiu,Yunqing Gu,Yun Ren,Chengqi Mou,Chaoxiang Hu,Hongxin Ding,Denghao Wu,Zhenxing Wu,Jiegang Mou
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1)
标识
DOI:10.1063/5.0245462
摘要

To reduce the adverse damage caused by cavitation phenomena to the hydraulic machinery, such as surface erosion of the equipment, increased mechanical vibration, and decreased service life, this review summarizes from the aspects of cavitation instability mechanisms, cavitation prediction methods, and cavitation suppression methods. In terms of cavitation flow instability mechanisms, two main mechanisms that affect the shedding of cloud cavitation, reentrant jet, and bubbly shock wave, were thoroughly summarized. It is pointed out that the shedding behavior of the cavity is greatly influenced by the thickness of the reentrant jet relative to the cavity, and the bubbly shock wave is also one of the important factors in cavitation vortex dynamics. In terms of cavitation prediction methods, a detailed comparison and analysis were made between the traditional cavitation prediction methods based on numerical simulation and the currently popular cavitation prediction methods based on neural networks. The former mainly includes cavitation models and turbulence models, while the latter mainly summarizes the application of chain physics-informed neural network, pressure–velocity network, long short-term memory, and other neural networks in cavitation prediction. It is pointed out that artificial intelligence predictive models have advantages in model order reduction and accurate prediction of cavitation flow field feature parameters. In terms of cavitation suppression methods, active and passive cavitation suppression methods were thoroughly summarized. Finally, based on the current research status of hydrofoil cavitation prediction methods and cavitation suppression methods, this article discusses and looks forward to the direction of development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason完成签到 ,获得积分10
刚刚
輕瘋发布了新的文献求助10
1秒前
2秒前
3秒前
过眼云烟完成签到,获得积分10
4秒前
albertchan完成签到,获得积分10
6秒前
7秒前
没有稗子完成签到 ,获得积分10
7秒前
WFG完成签到,获得积分10
7秒前
7秒前
8秒前
王昌宇完成签到,获得积分10
9秒前
追寻梦之完成签到 ,获得积分10
10秒前
zhiying完成签到,获得积分10
11秒前
小张发布了新的文献求助10
13秒前
13秒前
FashionBoy应助马倩茹采纳,获得10
15秒前
16秒前
17秒前
17秒前
李健的小迷弟应助scichu采纳,获得10
18秒前
淡定从凝发布了新的文献求助10
18秒前
18秒前
超帅迎松完成签到,获得积分10
19秒前
整齐乌发布了新的文献求助10
21秒前
lzd完成签到,获得积分10
21秒前
大模型应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得30
22秒前
东木应助科研通管家采纳,获得60
22秒前
朱建军应助科研通管家采纳,获得10
22秒前
星辰大海应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得30
22秒前
咚咚完成签到 ,获得积分10
23秒前
fairy发布了新的文献求助10
23秒前
zhiying发布了新的文献求助10
24秒前
tanXX发布了新的文献求助10
24秒前
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4107713
求助须知:如何正确求助?哪些是违规求助? 3645665
关于积分的说明 11548641
捐赠科研通 3352068
什么是DOI,文献DOI怎么找? 1841749
邀请新用户注册赠送积分活动 908297
科研通“疑难数据库(出版商)”最低求助积分说明 825409