Qualitative and Quantitative Transformer-CNN Algorithm Models for the Screening of Exhale Biomarkers of Early Lung Cancer Patients

电子鼻 肺癌 肺癌筛查 算法 呼气 化学 气体分析呼吸 人工智能 计算机科学 肿瘤科 色谱法 放射科 医学
作者
Lei Li,Fangting Zhu,Bainan Tong,Yuan You,Feng Ping Cao,Renhang Zhang,Hongyin Zhu
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c06604
摘要

Electronic nose (E-nose) has been applied many times for exhale biomarker detection for lung cancer, which is a leading cause of cancer-related mortality worldwide. These noninvasive breath testing techniques can be used for the early diagnosis of lung cancer patients and help improve their five year survival. However, there are still many key challenges to be addressed, including accurately identifying the kind of volatile organic compounds (VOCs) biomarkers in human-exhaled breath and the concentrations of these VOCs, which may vary at different stages of lung cancer. Recent research has mainly focused on E-nose based on a metal oxide semiconductor sensor array with proposed single gas qualitative and quantitative algorithms, but there are few breakthroughs in the detection of multielement gaseous mixtures. This work proposes two hybrid deep-learning models that combine the Transformer and CNN algorithms for the identification of VOC types and the quantification of their concentrations. The classification accuracy of the qualitative model reached 99.35%, precision reached 99.31%, recall was 99.00%, and kappa was 98.93%, which are all higher than those of the comparison algorithms, like AlexNet, MobileNetV3, etc. The quantitative model achieved an average R2 of 0.999 and an average RMSE of only 0.109 on the mixed gases. Otherwise, the parameter count and FLOPs of only 0.7 and 50.28 M, respectively, of the model proposed in this work were much lower than those of the comparison models. The detailed experiments demonstrated the potential of our proposed models for screening patients with early stage lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听话的醉冬完成签到 ,获得积分10
4秒前
blueblue完成签到,获得积分10
4秒前
r41r32完成签到 ,获得积分10
6秒前
顾矜应助归零者碳索者采纳,获得10
19秒前
熬大夜完成签到 ,获得积分10
21秒前
缘分完成签到,获得积分10
22秒前
tingalan完成签到,获得积分10
27秒前
qianchimo完成签到 ,获得积分10
29秒前
dd完成签到 ,获得积分10
33秒前
SciGPT应助shin采纳,获得10
33秒前
JasVe完成签到 ,获得积分10
36秒前
minuxSCI完成签到,获得积分10
40秒前
光亮若翠发布了新的文献求助10
43秒前
wjswift完成签到,获得积分10
43秒前
齐朕完成签到,获得积分10
44秒前
HK完成签到 ,获得积分10
46秒前
星辰大海应助饼干采纳,获得10
54秒前
Singularity应助科研通管家采纳,获得10
57秒前
Singularity应助科研通管家采纳,获得10
57秒前
back you up应助科研通管家采纳,获得30
57秒前
isedu完成签到,获得积分10
57秒前
1分钟前
墨月白发布了新的文献求助10
1分钟前
1分钟前
1分钟前
光亮若翠完成签到,获得积分10
1分钟前
个性仙人掌完成签到 ,获得积分10
1分钟前
HCKACECE完成签到 ,获得积分0
1分钟前
行云流水完成签到,获得积分10
1分钟前
回首不再是少年完成签到,获得积分0
1分钟前
1分钟前
666完成签到 ,获得积分10
1分钟前
轻松元绿完成签到 ,获得积分10
1分钟前
现代大神发布了新的文献求助10
1分钟前
Michelle发布了新的文献求助10
1分钟前
1分钟前
ocean完成签到,获得积分10
1分钟前
小狗说好运来完成签到 ,获得积分10
1分钟前
shin发布了新的文献求助10
1分钟前
黑子完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336787
关于积分的说明 10282126
捐赠科研通 3053566
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468