自编码
人工智能
MNIST数据库
计算机科学
模式识别(心理学)
聚类分析
降维
推论
匹配(统计)
无监督学习
机器学习
深度学习
数学
统计
作者
Alireza Makhzani,Jonathon Shlens,Navdeep Jaitly,Ian Goodfellow,Brendan J. Frey
出处
期刊:Cornell University - arXiv
日期:2015-01-01
被引量:1119
标识
DOI:10.48550/arxiv.1511.05644
摘要
In this paper, we propose the "adversarial autoencoder" (AAE), which is a probabilistic autoencoder that uses the recently proposed generative adversarial networks (GAN) to perform variational inference by matching the aggregated posterior of the hidden code vector of the autoencoder with an arbitrary prior distribution. Matching the aggregated posterior to the prior ensures that generating from any part of prior space results in meaningful samples. As a result, the decoder of the adversarial autoencoder learns a deep generative model that maps the imposed prior to the data distribution. We show how the adversarial autoencoder can be used in applications such as semi-supervised classification, disentangling style and content of images, unsupervised clustering, dimensionality reduction and data visualization. We performed experiments on MNIST, Street View House Numbers and Toronto Face datasets and show that adversarial autoencoders achieve competitive results in generative modeling and semi-supervised classification tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI