High Strength Chitosan Hydrogels with Biocompatibility via New Avenue Based on Constructing Nanofibrous Architecture

自愈水凝胶 壳聚糖 纳米纤维 生物相容性 材料科学 化学工程 溶解 扫描电子显微镜 水溶液 化学 高分子化学 复合材料 有机化学 工程类 冶金
作者
Jiangjiang Duan,Xichao Liang,Yan Cao,Sen Wang,Lina Zhang
出处
期刊:Macromolecules [American Chemical Society]
卷期号:48 (8): 2706-2714 被引量:274
标识
DOI:10.1021/acs.macromol.5b00117
摘要

Breaking the limitation of traditional acid dissolving methods for chitosan by creating an alkali/urea hydrogen-bonded chitosan complex, a new solvent (4.5 wt % LiOH/7 wt % KOH/8 wt % urea aqueous solution) was used to successfully dissolve chitosan via the freezing–thawing process, for the first time. Subsequently, high strength hydrogels with unique nanofibrous architecture were constructed from the chitosan alkaline solution. The results from 13C NMR, laser light scattering, atomic force microscopy, transmission electron microscopy, and scanning electron microscopy confirmed that chitosan easily aggregated in the solution and could self-assemble in parallel to form perfect regenerated nanofibers induced by heating. At elevated temperature and concentration, the regenerated chitosan nanofibers could entangle and cross-link with each other through hydrogen bonds to form hydrogels. The novel chitosan hydrogels exhibited homogeneous architecture and high strength as a result of the strong networks woven with the compact nanofibers. The compression fracture stress of the chitosan hydrogels was nearly 100 times that of the chitosan hydrogels prepared by the traditional acid dissolving method, revealing that the nanofibrous network microstructures contributed greatly to the reinforcement of the hydrogels. Furthermore, the chitosan hydrogels exhibited excellent biocompatibility and safety as well as a smart controlled drug release behavior triggered by acid. Therefore, we opened up a completely new avenue to construct high strength chitosan hydrogels for applications in biomedicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助mariawang采纳,获得10
1秒前
3秒前
lipppu发布了新的文献求助10
5秒前
Bravacristina完成签到,获得积分10
5秒前
7秒前
小樊应助kento采纳,获得50
8秒前
陈佳完成签到,获得积分10
11秒前
15秒前
17秒前
天明完成签到,获得积分10
18秒前
19秒前
19秒前
yumu发布了新的文献求助20
19秒前
22秒前
谦让夏寒发布了新的文献求助10
24秒前
25秒前
本凡发布了新的文献求助10
25秒前
上官若男应助核桃酥采纳,获得30
26秒前
子厝关注了科研通微信公众号
27秒前
mariawang发布了新的文献求助10
29秒前
33秒前
34秒前
shame完成签到,获得积分10
35秒前
奉宣室以何年完成签到,获得积分20
36秒前
39秒前
39秒前
39秒前
39秒前
完美世界应助简单采纳,获得10
40秒前
41秒前
晴晨完成签到 ,获得积分10
43秒前
烟花应助hxm采纳,获得10
44秒前
子厝发布了新的文献求助10
44秒前
zhuminghui发布了新的文献求助10
44秒前
hjg发布了新的文献求助10
45秒前
bkagyin应助欢喜的天空采纳,获得10
49秒前
xr完成签到,获得积分20
50秒前
51秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776552
求助须知:如何正确求助?哪些是违规求助? 3322124
关于积分的说明 10208682
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757893