清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Lung cancer survival period prediction and understanding: Deep learning approaches

人工智能 机器学习 深度学习 人工神经网络 均方误差 计算机科学 回归 预测建模 医学 特征(语言学) 卷积神经网络 比例危险模型 统计 数学 外科 哲学 语言学
作者
Shreyesh Doppalapudi,Robin G. Qiu,Youakim Badr
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:148: 104371-104371 被引量:98
标识
DOI:10.1016/j.ijmedinf.2020.104371
摘要

Survival period prediction through early diagnosis of cancer has many benefits. It allows both patients and caregivers to plan resources, time and intensity of care to provide the best possible treatment path for the patients. In this paper, by focusing on lung cancer patients, we build several survival prediction models using deep learning techniques to tackle both cancer survival classification and regression problems. We also conduct feature importance analysis to understand how lung cancer patients’ relevant factors impact their survival periods. We contribute to identifying an approach to estimate survivability that are commonly and practically appropriate for medical use. We have compared the performance across three of the most popular deep learning architectures - Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN) while comparing the performing of deep learning models against traditional machine learning models. The data was obtained from the lung cancer section of Surveillance, Epidemiology, and End Results (SEER) cancer registry. The deep learning models outperformed traditional machine learning models across both classification and regression approaches. We obtained a best of 71.18 % accuracy for the classification approach when patients’ survival periods are segmented into classes of ‘<=6 months’,’ 0.5 – 2 years’ and ‘>2 years’ and Root Mean Squared Error (RMSE) of 13.5 % andR2 value of 0.5 for the regression approach for the deep learning models while the traditional machine learning models saturated at 61.12 % classification accuracy and 14.87 % RMSE in regression. This approach can be a baseline for early prediction with predictions that can be further improved with more temporal treatment information collected from treated patients. In addition, we evaluated the feature importance to investigate the model interpretability, gaining further insight into the survival analysis models and the factors that are important in cancer survival period prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yoanna应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
宇文非笑完成签到 ,获得积分0
15秒前
星辰大海应助XXXXzy采纳,获得30
20秒前
31秒前
XXXXzy发布了新的文献求助30
37秒前
45秒前
yuancw完成签到 ,获得积分10
53秒前
如歌完成签到,获得积分10
1分钟前
swb完成签到,获得积分10
1分钟前
swb发布了新的文献求助10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
Owen应助XXXXzy采纳,获得30
1分钟前
1分钟前
XXXXzy发布了新的文献求助30
2分钟前
ldjldj_2004完成签到 ,获得积分10
2分钟前
Orange应助XXXXzy采纳,获得30
2分钟前
2分钟前
XXXXzy发布了新的文献求助30
2分钟前
3分钟前
zly完成签到 ,获得积分10
3分钟前
3分钟前
月儿完成签到 ,获得积分10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
Yoanna应助科研通管家采纳,获得20
4分钟前
hanabi完成签到,获得积分10
4分钟前
领导范儿应助XXXXzy采纳,获得30
4分钟前
4分钟前
Eatanicecube完成签到,获得积分10
4分钟前
XXXXzy发布了新的文献求助30
4分钟前
Orange应助XXXXzy采纳,获得30
4分钟前
5分钟前
XXXXzy发布了新的文献求助30
5分钟前
大模型应助XXXXzy采纳,获得30
5分钟前
隐形曼青应助seraphmay采纳,获得10
5分钟前
叶千山完成签到 ,获得积分10
5分钟前
5分钟前
klklklzzd发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4112109
求助须知:如何正确求助?哪些是违规求助? 3650531
关于积分的说明 11559982
捐赠科研通 3355188
什么是DOI,文献DOI怎么找? 1843178
邀请新用户注册赠送积分活动 909295
科研通“疑难数据库(出版商)”最低求助积分说明 826175