18F-FDG PET/CT radiomic predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients

医学 乳腺癌 放射科 肿瘤科 内科学 正电子发射断层摄影术 完全响应 PET-CT 化疗 新辅助治疗 癌症
作者
Panli Li,Xiuying Wang,Chong-Rui Xu,Cheng Liu,Chaojie Zheng,Michael J Fulham,Dagan Feng,Lisheng Wang,Shaoli Song,Gang Huang,Panli Li,Xiuying Wang,Chong-Rui Xu,Cheng Liu,Chaojie Zheng,Michael J Fulham,Dagan Feng,Lisheng Wang,Shaoli Song,Gang Huang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:47 (5): 1116-1126 被引量:96
标识
DOI:10.1007/s00259-020-04684-3
摘要

Pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) is commonly accepted as the gold standard to assess outcome after NAC in breast cancer patients. 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has unique value in tumor staging, predicting prognosis, and evaluating treatment response. Our aim was to determine if we could identify radiomic predictors from PET/CT in breast cancer patient therapeutic efficacy prior to NAC. This retrospective study included 100 breast cancer patients who received NAC; there were 2210 PET/CT radiomic features extracted. Unsupervised and supervised machine learning models were used to identify the prognostic radiomic predictors through the following: (1) selection of the significant (p < 0.05) imaging features from consensus clustering and the Wilcoxon signed-rank test; (2) selection of the most discriminative features via univariate random forest (Uni-RF) and the Pearson correlation matrix (PCM); and (3) determination of the most predictive features from a traversal feature selection (TFS) based on a multivariate random forest (RF). The prediction model was constructed with RF and then validated with 10-fold cross-validation for 30 times and then independently validated. The performance of the radiomic predictors was measured in terms of area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The PET/CT radiomic predictors achieved a prediction accuracy of 0.857 (AUC = 0.844) on the training split set and 0.767 (AUC = 0.722) on the independent validation set. When age was incorporated, the accuracy for the split set increased to 0.857 (AUC = 0.958) and 0.8 (AUC = 0.73) for the independent validation set and both outperformed the clinical prediction model. We also found a close association between the radiomic features, receptor expression, and tumor T stage. Radiomic predictors from pre-treatment PET/CT scans when combined with patient age were able to predict pCR after NAC. We suggest that these data will be valuable for patient management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助糟糕的铁锤采纳,获得10
刚刚
1秒前
我是老大应助爱笑的蛟凤采纳,获得10
1秒前
核桃发布了新的文献求助10
1秒前
HUO完成签到 ,获得积分10
2秒前
善学以致用应助雷大帅采纳,获得10
3秒前
Tourist应助危机的桐采纳,获得10
5秒前
科研通AI5应助喜悦的向珊采纳,获得10
6秒前
小太阳发布了新的文献求助50
6秒前
科研通AI6应助呵呵采纳,获得10
7秒前
酷波er应助呵呵采纳,获得10
7秒前
Wy完成签到,获得积分10
7秒前
思源应助wxyz采纳,获得10
7秒前
7秒前
清脆的夜白完成签到,获得积分10
8秒前
呆妞完成签到,获得积分20
9秒前
Hey完成签到 ,获得积分10
10秒前
lucman完成签到,获得积分10
10秒前
11秒前
12秒前
胡燕完成签到 ,获得积分10
13秒前
13秒前
香菜不加辣完成签到,获得积分20
13秒前
云溪发布了新的文献求助20
14秒前
敏感代云完成签到,获得积分10
15秒前
15秒前
15秒前
17秒前
掮客发布了新的文献求助10
17秒前
vivi发布了新的文献求助50
18秒前
雷大帅发布了新的文献求助10
18秒前
曾经冰露发布了新的文献求助10
20秒前
canghong完成签到,获得积分10
20秒前
起风了完成签到,获得积分10
20秒前
wisher发布了新的文献求助10
20秒前
SOL完成签到,获得积分10
21秒前
掮客完成签到,获得积分10
22秒前
霸气鹏煊发布了新的文献求助10
22秒前
deer发布了新的文献求助10
22秒前
xc完成签到,获得积分10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131510
求助须知:如何正确求助?哪些是违规求助? 4333301
关于积分的说明 13500077
捐赠科研通 4170192
什么是DOI,文献DOI怎么找? 2286127
邀请新用户注册赠送积分活动 1287084
关于科研通互助平台的介绍 1228076